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ARTICLE INFO ABSTRACT 
 

 
 

A parametric model to represent the profiles of ZA, ZI and ZK-types worms and a hollow wheel in 
the transverse plane (plane normal to the axis of the worm) has been developed, based on their 
characteristics. The profiles represented by a relatively fine meshing are more representative and can 
be used to generate wheels and worms more easily under the CAD and the finite element software’s. 
As a result, these models can be useful in rapid prototyping to manufacture worm gears according to 
the perfect theoretical model. 
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INTRODUCTION 
 
Worm gears are used to transmit a torque between two non-
coplanar axes, usually at a 90° angle between them, especially 
in the case of transmission with a high speed ratio. They are 
often used in divisors. Among them, the most widespread 
remains the worm gear with a hollow wheel. Several modeling 
works of profiles and surfaces [15-18] have been carried out 
based on the kinematic conditions of cutting. The authors take 
into account the interaction between the tool and the work 
piece to determine the equations of the surfaces and profiles. 
These models, if it is interest when machining metal materials, 
may be ineffective when dealing with plastic worm gear 
molding or rapid prototyping. 
 

WORM MODELING 
 
The distinction of the worm is based on the nature of their 
profile in the axial plane. There are four types: ZA worm 
(trapezoidal thread) (Fig.1), ZK worm (circular thread), ZI 
worm (involute thread), ZN worm (globular worm). By 
adopting a complex notation, the equation of their profile in 
the axial plane zy OOO ,,  is given by the relation Eq.1 where

xms ,  isthe axial thickness of a net at the radius mr . 

mi
mmxmxm errisz  .,2

1
,                                                     (1) 

 
 

A point M of the axial profile of affix xmz , , has in the 

(apparent) normal plane an affix pmz , whose expression is 

given by the relation Eq.2 where pms ,  is the apparent thickness 

of a net at the radius mr . 
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To determine the apparent profile of a worm is to determine 

the polar angle m . Equation Eq.3 gives the expression: 
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The distinction between the worms ZA, ZI and ZK is related to 

the expression of xms , which is explained afterwards, for each 

of these three types of worm. 
 
Trapezoidal profile screw (type ZA) 
 
The type ZA worm has in the axial section a rectilinear profile 

determined by the axial pressure angle x . In the normal 

section to the axis, this worm has a curved profile which 
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despite its appearance is not a involute of a circle. This profile 
is called Archimedes spiral. 
 

  xmaxaxm rrss tan2,, 
                                                 (4) 

 

 
 

Figure 1. Representation of a 5-thread trapezoidal screw cutter 
 
Circular profile worm (type ZK) 
 
The axial profile of the worm ZK is a portion of a circle 

defined by its center  00 , yxO  and its curved radius oR . The 

axial thickness and the equation of the normal profile are given 
by the following relation. 
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Worm with involute profile (ZI) 
 
The apparent section of the worm has an involute profile of a 
circle. The developable helical worm can therefore be likened 

toa cylindrical wheel with helical teeth of helix angle b  

(Eq.6). The axial section, even if it seems to be rectilinear, is 
always convex [14]. 
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The section of the threads (Figure 2) of the screw by a plane 
parallel to the axial plane and tangential to the base cylinder 
gives a rectilinear profile whose pressure angleα is given by 
the relation Eq.7. 

b


 
2

                                                                            (7) 

 
This straight profile is a fundamental property for developable 
helical worms. It represents the generating tangent of the net. 

A point M of the axial profile corresponds to a radius mr , an 

angle of incidence m and an axial thickness xms , (Eq.8), has 

for affix mz . 

 



m
zxm

inv
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Profile representation procedure 
 
The representation of the normal profile is done according to 
the algorithm described in appendix 1. The geometric quality is 

then function of the number dn of points M  chosen: it is the 

constant of discretization or the parameter of mesh of the 

profile. The bigger is dn , the better the accuracy. 
 

 
 

 
 

 
 

Figure 2. Section of a ZI worm 
 

MODELING HOLLOW WHEELS 
 
The modeling of the hollow worm wheel is very complex 
because the parameters and characteristics are defined only in 
the median plane of the wheel (axial plane of the screw). The 
difficulties also lie in the non-uniformity of the profiles 
according to the various planes normal to the axis of the 
hollow  
 
Determination of the profile in a normal plane wheel 
 
The study of a worm gear is reduced in the axial plane to a 
gear rack. Therefore, the conjugate profile of the wheel in this 
plane is the involute corresponding to this rack. The profile is 
determined as if it were an ordinary helical wheel using the 
apparent parameters. The apparent pressure angle of the 
hollow wheel is equal to the axial pressure angle of the 
conjugate worm. In addition, the cutting of the wheel is usually 
without interference because of its large number of teeth. 
 

ti                                                                              (9) 

 
The profile   (Eq.9) of a wheel then consists of a involute 
(involute of circle) i , and a trochoïde (connection at the foot 

of tooth), t . 
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Principle of parametrization: The method used for the 
modeling of the hollow width wheel bis based on the 

determination of any profile q in any plane normal to the axis 

of the wheel. 
 

  kzP qq : , bbk q                                                       (10) 

 
Table 1: Geometric characteristics of a worm gear [3, 14] 

 

GRANDEURS VIS ROUE 
Axial module (screw) 
or apparent (wheel) xm  

Number of nets or 
teeth 1z  

2z  

Helix angle 
1  

2  

offset 0x     10x  

Real module 

1sin xn mm   

Axial pressure angle 
(screw) or apparent 
(wheel) 

x  

Not axial (screw) or 
apparent (wheel) xx mp   

Helical step 

xz pzp 11   xz pzp 22   

Normal system with  751  

Reference protrusion  
 xa mh   

Hollow reference 

xf mh 2.1  

Tooth height 

xmh 2.2  

Empty at the bottom of 
the tooth xmc 2.0  

Normal system with  751  

Reference protrusion 

na mh   na mh   

Hollow reference 

nf mh 2.1  nf mh 2.1  

Tooth height 

nmh 2.2  nmh 2.2  

Empty at the bottom of 
the tooth nmc 2.0  nmc 2.0  

Reference primitive 
diameter xqmd 1    xmxzd 222   

Head diameter 

aa hdd 211   aa hdd 222   

Foot diameter 

ff hdd 211   ff hdd 222   

External diameter  

xae mdd   

Base diameter (ZI 
screws only) xb dd cos1  

 

 

Let us denote by   the axis of the worm and by qP  any 

plane of equation Eq.10. qP is normal to the  zO 2 axis of the 

wheel and parallel to the  xO1  axis of the worm. Let us cut a 

tooth from the hollow wheel by a plane mP  containing  and 

secant to the plane qP . Let us denote by mP  an axial plane of 

the worm. Let qM the intersection point of the planes qP , mP  

and a side of the tooth, 0M its counterpart in the median plane

0P  of the wheel (Figure 3) and qb the spacing between qP and

0P . To determine the parametric equation of the profile of the 

hollow wheel, is to look for the affix qmz , (Eq.11) of the point 

qM in the plane qP related to an orthonormal coordinate 

system  jiq eeO

,, . It involves finding, implicitly, the polar 

coordinates qmR ,  and qm , defining any point qM of the 

profile. 

     









 2
,,,,,

,

cossin


qmi

qmqmqmqmqm eRiRz          (11) 

 
Thus, it would be possible for example to easily find the 

equation of q in the three particular planes that are the 

median plane 0P  (reference plane), the intermediate plane or 

"sandwich"
1P (Figure3) and the outer plane 3P . 

 

 
 

Figure 3. Cutting a hollow wheel tooth 
 

Determination of involute: The plane mP forms an angle 

qm, with the plane qP . By noting qinv , the angle that the 

plane mP makes at the point of maximum clearance qdM , , and 

qa , the angle that the plane mP makes at the point of the 

tooth's head qaM , , we can write the relations Eqs.12, 13 and 

14, where  1bbH q   is the function of Heaviside. 
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







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q
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Ra

b

,
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Moreover, the conjugate profile mi,  of the wheel in the plane 

mP is identical to the profile 0,i in the median plane 0P  of the 

wheel. Every point 0M  of the profile 0,i has an angle of 
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incidence 0,m  (Eq.15) and is marked by its polar angle 0,m  

(Eq.16). 
 
















0,

2
0, arccos

m
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m

R

R


                                                        

(15) 

 

   0,0,0, mtm invinv                                                    (16) 

 

Considering the angle qm ,  that the plane mP makes with the 

median plane 0P and the distance qb between qP and 0P , we 

can determine the radius 0,mR  (Eq.20) of the center of the 

wheel at the homologous point 0M and subsequently the 

coordinates of the point qM . 

 

 













 cR

b
RR f

qm

q
am

,
20,

sin
                                    (17) 

 

 2
2

tan 
R

bq
q                                                                 (18) 

 

In the plane qP , one can note the existence of the axis of 

symmetry  qq eO


,  to the profile.  qq eO


,
 
and  jq eO


,  are 

such as   qjq ee 


,  (Eq.18). Since the tooth thickness is 

constant, the axial thickness qms ,  in the plane qP at the point 

qM is identical to the thickness 0,ms  (Eq.19) at the point 0M

in the reference plane 0P . We then deduce the abscissa qmx , of 

the points qM of the profile by the relation Eq.20. 

 

    0,0,0,0,, sin mtmmqm invinvRss                             

(19) 
 

    qmtmqm invinvRx   0,0,0,, sin                           (20) 

 

The angle qm , that the radius qmR ,  (Eq.21) makes with the 

axis  jq eO

, in the plane qP  is given by the relation Eq.22. 
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The polar coordinates qmR , and qm , being defined, the affix 

qmz ,  of the point qM can then be determined with the relation 

Eq.11. 

Determination of the trochoid: The principle of determining 

the points of the profile qt, corresponding to the trochoid is 

the same as that of the determination of the points 

corresponding to the involute qi, . Every point 0M  of the 

trochoid in the plane 0P is marked by its radius 0,mR and its 

angle 0,m compared to axis  00 eO

, defined by the relations 

Eqs.17 and 23. 
 

 0,0max,0,0, tmm inv                                            (23) 

 

Note that the expression of 0,m is obviously different from 

that of the involute. It depends on the angle of incidence 0,m

of the point 0M of the trochoid translated by the relation 

Eq.24. 
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The variables K and 0max, are the parameters of G. Henriot 

[3, 4] whose expressions are mentioned in the appendix. As a 

result, for every point qM  of qt, in the plane qP , its abscissa 

qmx , is determined by equation Eq.25. 

 

    qtmqmqmqmqm invRRx   0,0max,0,,,,, sinsin      (25) 

 

The expression of the ray qmR , in qP remains the same, 

therefore identical to the relation Eq.21. It is then possible to 
determine qm , the angle that this ray makes with the axis 

 jq eO

, by the relation Eq.26. By substituting of qmx , with its 

expression, we deduce the relation: 
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Procedure for obtaining the profile of the hollow wheel in 

the plan qP
 

 

It has just been shown that the profile q of the hollow wheel 

is the locus of the points qM in the plan qP , which goes from 

the point of the head qaM , to the point of the foot qfM , , 

passing through the point of clearance qdM , . Numerically, q

is obtained by varying the angle qm, in the range of values

   qfqinvqinvqa ,,,, ,,   . We can then write a procedure as 

explained in appendix 2. 
 

APPLICATIONS 
 
The procedures developed above have been implemented in a 
VB application (Figure 4) interfaced with the Solid Works 
CAD software. This coupling makes it easier to generate both 
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the profiles (Figures 5 and 6) and the components (Figure 8) of 
the gear with good geometric accuracy by inserting a point file 
combined with other features. 
 

 
 

Figure 4. Graphical interface under VB 
 

Figure 5 illustrates the profile in the normal plane of a hollow 
wheel tooth for both normal and deported teeth (positive and 
negative deports). 
 

 
 

Figure 5. Profile of a hollow wheel tooth 
 

Figure 6 illustrates the profile of a thread of a worm for both 
normal and deported teeth (positive and negative deports). 
 

 
 

Figure 6. Normal profile of a worm net 
 

Figure 7 compares the axial profiles of screws ZA and ZI with 
each other for the same characteristics. There is a slight gap 
between the two profiles at the root of the net as they seem to 
be confused beyond. In reality, both profiles are tangent to the 
primitive point. 
 

  
 

Figure 7: Axial profiles of screws ZA, ZIwith  

12q ;  20x ; 6xm ; 41 z  

   
 

Figure 8: Screw gear under SolidWorks 4xm ;  20x ; 

8q  ; 1 2z  ; 2 20z  . 

 

Conclusion 
 
Due to the knowledge of the axial parameters of a worm gear, 
we have modeled the apparent profiles of the worm and hollow 
wheels. As a result, CAD models were more easily and 
faithfully generated by the theory of software interaction. It is 
then possible to envisage later a thermo mechanical analysis of 
worm gears relating to contact problems by a finite element 
analysis. Another interest of this work is the possibility to be 
able to realize in series worm and hollow wheels, with a good 
geometric precision, by rapid prototyping. 
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APENDIX 
 
Apendix1: Procedure for representing an apparent worm 
profile [8] 
 
Beginning 

d
d

n

1


 
 

For  10,mu , repeat : 

 

hurr mam   

 xm
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m s
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,
.


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dmm uu 1  

 
End 
 
Apendix 2: Procedure for representing the profile of a hollow 
wheel [1, 8]. 
 
 
 
 
 
 
 
 
 
 

Beginning 
{Obtaining the involute} 
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1
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{Obtaining the trochoid} 

v
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
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
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2
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For  10,mu , repeat :  
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
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
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


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
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End 
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