

Available online at http://www.journalcra.com

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

International Journal of Current Research Vol. 11, Issue, 11, pp.8308-8317, November, 2019

DOI: https://doi.org/10.24941/ijcr.37220.11.2019

RESEARCH ARTICLE

COMPATIBILITY OF ENTOMOPATHOGENIC NEMATODES WITH INSECTICIDES IN IPM SYSTEM

*Gitanjali Devi

Department of Nematology, Assam Agricultural University, Jorhat, 785013, Assam, India

ARTICLE INFO

ABSTRACT

Article History: Received 24th August, 2019 Received in revised form 28th September, 2019 Accepted 15th October, 2019 Published online 26th November, 2019 Entomopathogenic nematodes (EPNs) are potential biocontrol agent against many economically important crop pests. Combining the use of biological control agent with chemical insecticide in IPM programme leads to reduced the environmental risk as well as management costs. The author review different aspects of compatibility or interaction of insecticide with EPNs which will show promise to contain pest infestation in agriculture.

Key Words:

Entomopathogenic Nematodes (EPNs), Biological Control, Chemical Insecticide, Compatibility, Interaction.

Copyright © 2019, *Gitanjali Devi.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Gitanjali Devi. 2019. "Compatibility of entomopathogenic nematodes with insecticides in IPM system", *International Journal of Current Research*, 11, (10), 8308-8317.

INTRODUCTION

The widespread use of pesticides against potential pests has resulted in the appearance of pesticide resistance in many pests, phytotoxicity, pesticide residue problems on plant products, growing cost of the plant production and overall negative environmental impacts on human and animal health (Dalvi et al., 2011). It has been suggested that combining reduced rate of insecticides with bio control agent could achieve adequate control insect pests while reducing the adverse effects of insecticides in Integrated Pest Management (IPM) system (Alfred and Grewal, 2004). Entomopathogenic nematodes (EPNs) of the genera Heterorhabditis and Steinernema under family Heterorhabditidae and Steinernematidae, respectively are potential biological control agents against many insect pests .EPNs may contribute more if integrated with other methods of control than their use solely as biocontrol agents. It has thus become very important to know more about which insecticides help the nematodes IPM system. Moreover, chemical insecticide manufacturing industries do not test product toxicity to entomopathogens, just like for predators and parasitoids. It may reduce the dependence on chemical insecticides and thus contribute to slowing down the development of insecticide resistance and preventing adverse effects on environment.

Enabling the tank mixing of EPNs with other control products in a specific IPM programme could lead to increased control of the target pest, with greater cost-effectiveness, and with a reduction in application time required (Koppenhofer and Grewal, 2005).

Compatibility Study: Entomopathogenic nematodes are often applied to sites and ecosystems that routinely receive other inputs like chemical pesticides, wetting agents, fertilizers, and soil amendments. Most of the studies of the compatibility (survivability/activity/viability) of entomopathogenic nematodes (EPNs) with insecticides have been conducted as laboratory bioassays with direct exposure of nematodes in aqueous solutions. However studies on penetration rate, infectivity, reproduction rate of EPNs are conducted in insect hosts following pesticide exposure (Table1). Nictating behavior appears to be a better indicator than movement for screening pesticides for compatibility with nematodes. Nematodes could be successfully mixed with chemicals that enhance the nictating behavior of infective juveniles. It is still necessary to test the commonly used pesticides in the area where EPNs are anticipated to be used. Nematode response to insecticide residues resulting from foliar application to plants infested with foliar pest should also be investigated.

Interaction Study: The chemical substances employed to control a single pest can reduce the efficacy of EPNs, or may be synergistic, since at sub-lethal doses they can cause stress on the insect pest and provide better control by the nematode (Kaya *et al.*, 1995; Koppenhofer *et al.*, 2000).

^{*}Corresponding author: Gitanjali Devi,

Department of Nematology, Assam Agricultural University, Jorhat, 785013, Assam, India.

It has been observed that exposure to certain chemicals may stimulate nematode movement and enhance host finding behavior and penetration of the host (Ishibashi and Takii, 1993). In field trials, a mixed application of Steinernema carpocapsae with certain insecticides, viz., diazinon, fenitrothion, dichlorvos, oxamyl, acephate, permethrin has provided more effective insect control than separate applications of each. Such chemicals may stimulate passive or inactive nematodes and thereby enhance their infectivity against the target insects. Helminth parasites possess a number of mechanisms for detoxification of harmful xenobiotics. Helminths also use activity of the cytochrome P450 system (Kotze, 1997). Piperonyl-butoxide acts as a synergist by inhibiting the cytochrome P450-mediated metabolism of the insecticide (Jones 1998). S. feltiae may possess only restricted possibilities for metabolizing this chemical compound, piperonyl-butoxide using the cytochrome P450 system. Combinations of insecticides and insect parasitic nematodes have a synergistic effect on nematode infection rates against white grubs (Koppenhofer and Kaya, 1998; Koppenhofer et al., 2002).

Factors affecting Interaction: Generalization on EPNs tolerance to insecticides cannot be given, because different results are related to nematode species and strain, chemical formulation, application dose and exposure time.

Differential reaction of EPNs with different pesticides: The species and strain of nematodes appear to be of key importance in determining its level of susceptibility to systemic insecticides (Koppenhöfer & Grewal, 2005; Atwa et al., 2013). The only free-living stage is non-feeding third stage called the infective juvenile (IJ). Their mouth and anus are closed and thus the only point of access is the cuticle. Species that have the second stage cuticle fixed on the external surface of the third stage should be better protected. H.bacteriophora and H.heliothidis were less tolerant to some pesticides than Steinernema spp. The normal development of all the tested species was adversely affected after chemical treatment with most pesticides except for S.glaseri. This strain was the most tolerant to the toxic effects of pesticides organophophates and carbamates and appeared to be the most resistant and thus suitable for integration with pesticides (De Nardo and Grewal, 2003; Garcia-del-Pino and Jove, 2005; Laznik et al., 2012). The different effects between insecticides on survival of nematode IJs could be related to the different effects on nematodes chemical receptors and the respiratory metabolites. There was a low IJ mortality for S. carpocapsae when exposed to chlorpyrifos (Zimmerman and Crashaw 1990; Gutierrez et al., 2008). This insensitivity in the EPNs involves the presence of butyrylcholinesterase in the synapse of parasitic nematodes, protecting the acetylcholinesterase, and thus acting as a defense against such compounds (Selkirk et al., 2001). Mortality and infectivity of nematode may be related to the reduction in lipids in the EPNs after contact with insecticides (Wright and Perry 2002). Genetic selection can be used to enhance resistance of entomopathogenic nematodes to certain environmental stresses. Nematode resistance to some pesticides can be enhanced and thus oxamyl resistant strains of H.bacteriophora have been isolated. Reductions in nematode activity after exposure to chemicals are not accompanied with concomitant reductions in infectivity. Nematode exposed to these chemicals became quiescent but after being removed from contact with chemicals, became active again and are capable of infecting susceptible insect hosts.

The reason for the very slow death state may be due to rates of penetration, metabolism and detoxification of the chemical by the nematode (Forshler *et al.*, 1987). In addition to stressing the target hosts, infective juveniles can also be exposed to infectivity enhancing additives. Jaworska *et al.*, (1996, 2002) demonstrated that manganese and magnesium cations enhanced *H. bacteriophora* infection in *G. mellonella* and *Sitona lineatus*. Knowledge of the potential reproduction loses attributable to the used pesticides will be help to calculate the required application rate of nematodes in the field. Endemic nematode strains may differ in sensitivity to different formulations of the same pesticide (Rovesti and Deseo, 1990; Grewal 2002). Therefore, before tank mixing newly isolated EPNs with any pesticides, their compatibility should be checked.

Chemical group of insecticide: The large variability between insecticides from the same chemical group in their compatibility with entomopathogenic nematodes make extrapolation of data between products unreliable (Rovesti and Deseo,1990), therefore each candidate product for an IPM system should be tested individually. Compatibility of EPNs and pesticides targeted only one specific group of pesticides, usually pesticides which are used against one specific pest, pesticides that belong to the same chemical group, e.g. carbamates, or have the same biological activity, e.g. nematicides. Some reports demonstrated that certain insecticides, particularly organophosphates and carbamates, possess nematicidal properties (Atwa, 1999). These insecticides induced adverse effects ranging from impaired movement, infectivity and reproduction to death of Neoaplectana carpcapsae IJs (Rovesti and Deseo, 1990). Zimmerman and Cranshaw (1990) reported that carbaryl was significantly more toxic to H. bacteriophora (HP88 strain) than the Neoaplectana spp. after 24 h and 48 h of exposure to 1000 ppm, while N. carpocapsae and N. bibionis were not significantly affected by any of the concentrations tested. Zang et al., (1994) and Gordon et al., (1996) reported no toxic effects of several carbamates and minimal effects of a variety of organophosphates on nematode survival, infectivity and reproduction.

The infectivity of nematodes surviving an insecticide treatment was unimpaired after nematodes were freed from insecticides (Kaya and Burlando, 1989). Several carbamates and organophosphates adversely affected the in vitro development and reproduction of S. carpocapsae (all strains), whereas this strain S. carpocapsae (all strains) was unaffected by the chlorinated hydrocarbon methoxychlor or the synthetic pyrethroid fenvalerate. García-del-Pino and Jové (2005) observed that H. bacteriophora and S. carpocapsae were similarly, highly tolerant to fipronil, whereas S. arenarium was more sensitive. However, fipronil concentration and exposure time affected badly the infectivity of Beninese EPN (Zadji, 2014). Chitin-inhibiting insecticides had been observed not affecting the viability of Heterorhabditis bacteriophora (Rovesti et al., 1988), S. carpocapsae and Steinernema feltiae .However, some pesticides can reduce nematode survival and infectivity (Grewal et al., 1998). Some chemicals used as inert ingredients or adjuvants in formulations can be toxic to nematodes hence compatibility of each formulation with the specific nematode species should be evaluated.

Exposure time: Entomopathogenic nematodes are reported to be tolerant to short exposure (2-6h) to most agrochemicals,

Table 1. Compatibility of Entomopathogenic nematodes with chemical pesticides

Nematode	Insecticide	Compitibility	Test Insect	Interaction	Reference
Steinernema carpocapsae DD 136	diazinon		Hylemia spp	as effectively as the chemical insecticide	Cheng &Bucher, 1972
Neoaplectana dutkyi DD-136	Organophosphates, formothion , phosalon	toxic			Rao et al., 1975
S.carpocapsae	Oxamyl	Non-toxic			Fedorko et al.,1977a; Fedorko et al.,1977b
S. feltiae	Organophosphate and carbamate	toxic			
N. carpocapsae	Organophosphates and carbamates	toxic			Hara & Kaya, 1982
N.carpocapsae	Organophosphates and carbamates		beet armyworm	toxic	Hara & Kaya,1983a Hara & Kaya,1983b
S. feltiae DD-136	carbaryl, dimethoate, endosulfan, malathion	Non- toxic			Das & Divakar, 1987
Heterorhabditis sp.	chlorpyrifos, endosulfan		Otiorhynchus sulcatus	slightly toxic	Heungens & Buysse, 1987
N.carpocapsae	Hostathion[triazophos]		Agrotis ipsilon	100% mortality	El-Kifl& Sammour, 1988.
H. bacteriophora	parathion, phorate, terbufos, fonofos, isofenphos, phoxim, aldicarb, carbofuran, methomyl, metham sodium [metham] ,phenamiphos [fenamiphos] Aldicarb, carbofuran, methomyl	toxic	G.mellonella	antagonistic	Rovesti et al., 1988
S.feltiae	fenamiphos18 mg a.i./kg dry sand		G.mellonella	76.7% mortality	Kaya &Burlando,1989
N. carpocapsae	chlordecone		Cosmopolites sordidus	Synergistic	Kermarrec & Mauleon, 1989
Steinernema sp., Heterorhabditis spp S. carpocapsae S. feltiae H. bacteriophora, H. heliothidis, S.carpocapsae S. feltiae	parathion, aldicarb, methomyl, flubenzimine, metham sodium and fenamiphos phosphamidon, diazinon, chlorpyrifos, endosulfan	toxic Non toxic	G.mellonella	Negligible effect	Rovesti 1989; Rovesti & Deseo, 1990; Rovesti et al.,1990; Rovesti &Deseo, 1991
H. sp. HP-88 N. carpocapsae N. bibionis	Carbaryl, bendiocarb, Diazinon Carbaryl, bendiocarb, chlorpyrifos	Highly toxic Less toxic Highly toxic			Zimmerman & Cranshaw, 1990
S. feltiae	Bentazone, ioxynil, hexaconazole, cyromazine, buprofezin quizalofop-ethyl, tralkoxydim, sulfur ,potassium soap isofenphos,permethrin,fluazifop butyl, iprodione	nontoxic toxic	Tenebrio molitor	synergistic	Vainio &Hokkanen, 1990; Vainio, 1994
S.carpocapsae H.bacteriophora	oxamyl		Galleria mellonella	antagonistic	Gaugler& Campbell, 1991
H. bacteriophora H. heliothidis S.glaseri	organophosphates and carbamates	less tolerant toxic	Cosmopolites sordidus		Sirjusingh et al.,1991
S.kushidai	diazinon ,fenthion	toxic	Anomala cuprea		Fujiie et al., 1993
S.carpocapsae All strain	acephate, permethrin		Spodoptera litura	synergistic	Ishibashi& Takii ,1993
S.carpocapsae	Cartap, profenofos, pyraclofos diazinon, dichlorvos, fenthion, malathion, trichlorfon, propetamphos,prothiofos cartap, profenofos	toxic weak toxicity	Spodoptera litura	Antagonistic	Zhang et al.,1994

S.feliae Úmea strain ca H.bacteriophora fer strain HP88 fer S. feltiae Fo H. bacteriophora im S. feltiae Fo S. feltiae Fo S. carpocapsae H.bacteriophora ter S.carpocapsae Ph S.glaseri, S. feltiae Ca H. megidis Tr	enoxycarb, arbofuran nalathion enamiphos, oxamyl, avermectin formalin , chlorine midacloprid erbufos, fonofos, tefluthrin hosphamidon, Monocrotophos Phorate	toxic toxic Less toxic highly toxic Non toxic	Spodoptera litura white grubs Cyclocephala hirta C. pasadenae Diabrotica	80% mortality synergistic	Gordon et al.,1996 Baweja &Sehgal, 1997 Glazer <i>et al.</i> ,1997 Grewal <i>et al.</i> , 1998 Koppenhofer &Kaya, 1998
H.bacteriophora ma H.bacteriophora fer strain HP88 fer S. feltiae Fo H. bacteriophora im S. feltiae Fo S. carpocapsae H.bacteriophora ter S.carpocapsae Ph S.glaseri, S. feltiae Ca H. megidis Tr	nalathion enamiphos, oxamyl, avermectin formalin , chlorine midacloprid erbufos, fonofos, tefluthrin thosphamidon, Monocrotophos Phorate	Less toxic highly toxic Non toxic	white grubs Cyclocephala hirta C. pasadenae Diabrotica	¥	Glazer et al., 1997 Grewal et al., 1998
H.bacteriophora fer strain HP88 Fo S. feltiae Fo H. bacteriophora im S.carpocapsae H.bacteriophora ter S.carpocapsae Ph S.glaseri, S. feltiae Ca H. megidis Tr	enamiphos, oxamyl, avermectin Formalin , chlorine midacloprid erbufos, fonofos, tefluthrin Phosphamidon, Monocrotophos Phorate	Less toxic highly toxic Non toxic	white grubs Cyclocephala hirta C. pasadenae Diabrotica	¥	Glazer et al., 1997 Grewal et al., 1998
H.bacteriophora fer strain HP88 Fo S. feltiae Fo H. bacteriophora im S.carpocapsae H.bacteriophora ter S.carpocapsae Ph S.glaseri, S. feltiae Ca H. megidis Tr	formalin , chlorine midacloprid erbufos, fonofos, tefluthrin rhosphamidon, Monocrotophos Phorate	highly toxic Non toxic	white grubs Cyclocephala hirta C. pasadenae Diabrotica	synergistic	Grewal et al., 1998
S. feltiae Fo H. bacteriophora im S.carpocapsae H.bacteriophora ter S.carpocapsae Ph S.glaseri, S. feltiae Ca H. megidis Tr	nidacloprid erbufos, fonofos, tefluthrin 'hosphamidon, Monocrotophos Phorate	Non toxic	Cyclocephala hirta C. pasadenae Diabrotica	synergistic	
S.carpocapsae H.bacteriophora ter S.carpocapsae Ph S.glaseri, S. feltiae Ca H. megidis Tr	erbufos, fonofos, tefluthrin hosphamidon, Monocrotophos Phorate		Cyclocephala hirta C. pasadenae Diabrotica	synergistic	Koppenhofer &Kaya, 1998
S.carpocapsae Ph S.glaseri, S. feltiae Ca H. megidis Tr Steinernema feltiae Tr	hosphamidon, Monocrotophos Phorate	Lass taxia			
S.glaseri, S. feltiae Ce H. megidis Steinernema feltiae Tr		Loss toxio	virgifera virgifera	Additive ,synergistic	Nishimatsu & Jackson, 1998
H. megidis Steinernema feltiae Tr	arhosulfan carbofuran	Less toxic	Corcyra cephlonica	Synergistic	Gupta, &Siddiqui, 1999
	an oosunan, valootutan	Non toxic	Galleria mellonella	synergistic	Bednarek et al., 2000
S.glaseri H.bacteriophora im	richlorfon, dimethoate		G. mellonella Liriomyza huidobrensis	Synergistic	Head et al., 2000
S. kushidai	nidacloprid	Non toxic toxic	white grubs	Synergistic antagonistic	Koppenhofer et al.,2000
H.marelatus IN Strain ha	alofenozide	Non toxic	Popillia japonica	No synergistic effect	Mannion et al.,2000
1	envalerate, endosulfan Duinalphos	Non toxic toxic	Galleria mellonella	antagonistic	Hussaini et al.,2001a
S.bicornutum ma	nalathion, endosulfan, carbofuran, quinalphos,	Non toxic	Galleria	no additive or	Hussaini et al. 2001b
	envalerate		mellonella	synergistic response	
H.bacteriophora EBN10k ch	hlorfluazuron, thiocyclam and benomyl		Spodoptera	81.5 % mortality	Atwa, 1999; Atwa et al., 2013; Atwa,
	Aethomyl, Benomyl, Trimiltox forte Diafenthiuron Chlorfluazuron		littoralis	-	2014
	hlorpyrifos			antagonistic	Chen et al.,2003
	iflubenzuron (Adept IGR), acephate (Orthene), fenoxycarb Precision 25WP)	Non toxic	Galleria mellonella	Increased infectivity	De Nardo& Grewal, 2003
H.bacteriophora HP88 Th	hiamethoxam, trichlorfon alofenozide, aluminum tris, trichlorfon, and carbaryl midacloprid aluminum tris , trichlorfon	toxic	Galleria mellonella	antagonistic synergistic	Alfred &Grewal, 2004
	midacloprid aluminum (ris, inchiorion midaclopride, Fipronil, Chlorpyriphos	Non toxic		antagonistic	Peters& Poullot, 2004
H. bacteriophora		inon toxic			,
H. megidis S.feltiae ca S. glaseri	arbosulfan , carbofuran		cockchafer's grubs	synergistic	Bednarek et al .,2004
	cephate, bifenthrin, and imidacloprid	nontoxic	Scapteriscus vicinus	Synergistic upto40% mortality	Barbara &Buss, 2005
S.carpocapsae fip H. bacteriophora S. arenarium				negligible effects	

S.carpocapsae	thiacloprid,		Galleria mellonella Bemisia tabaci	synergistic	Andrew et al.,2008
S. carpocapsae	thiacloprid and spiromesifen		Bemisia tabaci	synergistic	Cuthbertson et al.,2008
S.feltiae Rioja (native)	chlorpyrifos, pirimicarb	Non toxic	Spodoptera littoralis	Reduce virulence	Gutiérrez et al.,2008
ENTONEM® (commercial)	cypermethrin		~ <i>F</i> • • • <i>F</i> • • • • • • • • • • • • • • • • • • •	and reproductive potential	
H.bacteriophora	chlorantraniliprole	Non toxic	white grubs	1	Koppenhöfer &Fuzy, 2008
H.bacteriophora	Carbofuran, Carbosufan, imidaclopid	Non toxic			Priya & Subramanian ,2008
S. glaseri	Carbofuran, Carbosufan, Imidaclopid Phorate dimethoate	nontoxic			
S.carpocapsae	imidacloprid		Rhynchophorus ferrugineus	synergistic	Dembilio et al.,2010
S.feltiae, S. arenarium	clopyralid, fluoroxypyr, , sodium2-methoxy-5-nitrophenol, propamocarb, ,	Non toxic			Nermut &Mracek, 2010.
S. kraussei	fenithrothion, propargite oxamyl, sulphur, trifluralin, chlorpyrifos, lambda-cyhalotrin	toxic			
S. feltiae(B30) Entonem	Thiametoxam		Leptinotarsa decemlineata		Laznik <i>et al.</i> ,2010
H.indica, S.carpocapsae S. glaseri	Lorsban ^{1M} (chlorpyrifos), Decis TM (deltamethrin), Match TM (lufenuron), Deltaphos TM (deltramethrin+triazophos),		Spodoptera frugiperda	compatible	Negrisoli et al.,2010
	Dimilia ^{1M} (diffush an annual) Challian ^{1M}				
	(gamacyhalothrin) Karate Zeon TM (lambdacyhalothrin) Vexter TM (chlorpyrifos), Galgotrin TM (cypermethrin), Certero TM (triflumuron), Talcord TM (permethrin)				
S. feltiae	kinoprene, lufenuron, methomyl, metoxyfenozide, oxamyl, piperonyl- butoxide, pyriproxyfen, tebufenozide	Non toxic			Radová ,2010
S.carpocapsae	Monocrotophos, Dicofol,	Non toxic			Devi, 2011
H. indica (Meghalaya isolates)					
S.feltiae	thiamethoxam		Trialeurodes vaporariorum	No efficacy in combination	Laznik <i>et al.</i> ,2011
S.feltiae	Fenpyroximate,		T. molitor	antagonistic	Radová, 2011
H.bacteriophora	tebufenpyrad				
S.masoodi, S. seemae, S. carpocapsae S. mushtaqi	Endosulfan , Monocrotophos		Corcyra cephalonica	Less infectivity	Pervez &Ali, 2012
S.asiaticum H.bacteriophora	Endosulfan Malathion	Non toxic	Plutella xylostella	synergistic	Kumar et al.,2013
S.carpocapsae	Imidacloprid, Thiomethoxam	Non toxic	Galleria mellonella	synergistic	Kulkarni et al.,2013.
S. carpocapsae S. kraussei Steinernema feltiae H. bacteriophora	imidacloprid	Non toxic			Laznik &Trdan ,2013
H.zealandica S.yirgalemense	Cyperfos 500 EC®, Cryptogran [™] , Helicovir [™] , Nu-Film-P® and Zeba®,	Non toxic	Tenebrio molitor	synergistic	Van Niekerk & Malan, 2014
S.abbasi	Profenophos, Lambda-cyhalothrin, Dimethoate, Quinalphos Chlorfenapyr, Chlorantranilprole, Bifenthrin Dichlorvos	Non toxic toxic	Galleria mellonella	synergistic	Kumar <i>et al.</i> ,2015
H. bacteriophora S.feltiae	imidacloprid	Non toxic			Le Vieux & Malan, 2015
S.thermophilum	triazophos, chlorpyrifos and endosulfan	toxic	Galleria mellonella	antagonistic	Anes & Ganguly, 2016
S. carpocapsae H. indica			Helicoverpa armigera	Moderate effect	Devindrappa <i>et al.</i> ,2017
H.amazonensis GL H.amazonensis MC01	Avicta 500 FS®, Maxim®, Cruiser 350 FS®, Fortenza 600 FS®, Amulet®	Non toxic toxic	Tenebrio molitor	Reduced infectivity	Magnabosco et al.,2019

including insecticides, acaricides, fungicides and herbicides (Rovesti and Deseo 1990) and therefore, can often be tankmixed. However, long exposure to some plant protection products can affect the efficiency and reproduction of the nematodes (Negrisoli *et al.*, 2010). Atwa (1999) observed that length of exposure to the insecticides had little discernible effect on nematode survival and reproduction but depended on insecticidal concentration.

Temperature: Temperature influenced IJ mortality when the nematodes were mixed with insecticides. It is a known fact that between 20 and 26°C, the activity of EPNs is the highest and that we can relate their sensitivity to insecticides with their ability to withstand osmotic stresses.

Time of application: For the development of a successful IPM system, simultaneous use of insecticides and biocontrol agents may be required. Effective field control of lepidopteran larval pests has been reported following mixed applications of S.carpocapsae with chemical insecticides, and the study suggested that simultaneous use would synergistically improve insect control (Ishibashi, 1992). However a limited range of insecticides can be applied simultaneously with S.feltiae (Head et al., 2000). IPM approaches may require sequential rather than simultaneous application of chemical insecticides and entomopathogenic nematodes. Sequential treatments offer a greater flexibility in timing applications of the different control agents, many of which are known to cause differential mortality to the various life stages of the target pests (Williams and Walters, 1994). Thus targeting of a particular life stage with the most appropriate control measure remains a viable option. High level of control of leafminer larvae can be achieved by the application of S.feltiae to vegetable foliage previously treated with insecticides (Head et al., 2000). The addition of small amount of certain insecticides causes physiological weakening of the insect organism and reducing its resistance to EPNs. Investigation is necessary to determine whether prior application of sublethal doses of insecticides facilitates nematode invasion and whether prior exposure to nematodes lowers insect resistance to insecticides. One way of using the incompatible nematodes and insecticides would be applying them at different time after the period of persistence of the product, or vice versa (Negrisoli et al., 2010). Imidacloprid disrupts a grub's normal nerve function, which drastically reduces its activity, affects grooming and evasive behaviors, and facilitates nematode attachment onto the cuticle. Thus Imidacloprid is synergistic with S. glaseri (Steiner) or Heterorhabditis bacteriophora Poinar against white grubs (Koppenhöfer et al., 2000a, 2000b). Mole crickets treated with imidacloprid survived longer than those treated with the other insecticides, but still died from nematode infection, Pesticides which increase mole cricket activity, rather than slow it down, may result in increased contact with ambusher nematodes, S.scapterisci.

Application rate: It is necessary to calculate the application rate of the nematodes based on knowledge about the potential efficacy losses due to certain pesticides. Entomopathogenic nematodes are relatively resistant to many pesticides in recommended dosage, besides showing synergy between EPNs and chemicals insecticides.

Conclusion

Entomopathogenic nematodes (EPNs) could be effective in integrated pest management (IPM) and sustainable programs as long-term suppressive agents used in combination with commercially available insecticides. Due to the continuous introduction of new molecules or active ingredients and formulations in different market segments and to differences in susceptibility of nematode species/strains to pesticide formulations, it is difficult to provide up to date information for each of the chemical pesticides. The observed results for the compatibility/interaction effects of insecticides on nematodes not only make application of nematodes in agroecosystems easier, but also promising their use in integrated pest management systems.

REFERENCES

- Alfred, A., Grewal, PS. 2004. Tank-mix compatibility of the entomopathogenic nematodes, *Heterorhabditis bacteriophora* and *Steinernema carpocapsae*, with selected chemical pesticides used in turfgrass. Biocontrol Sci. Techn., 14(7): 725-730.
- Andrew, GSC., James, JM., Phil, N., Anthony, JP., Keith, FAW. 2008. The integrated use of chemical insecticides and the entomopathogenic nematode, *Steinernema carpocapsae* (Nematoda: Steinernematidae), for the control of sweet potato whitefly, *Bemisia tabaci* (Hemiptera: Aleyrodidae), Insect Sci., 15(5):447-453.
- Anes, KM., Ganguly, S. 2016.Pesticide compatibility with entomopathogenic nematode, Steinernema thermophilum (Nematoda: Rhabditida).Indian J.Nematol., 46 (1): 20-26.
- Atwa, AA., 1999. Interaction of certain insecticides and entomopathogenic nematodes in controlling some insect pests on fruit and vegetable crops. M.Sc. thesis, Faculty of Agriculture, University of Ain Shams at Shobra ElKhaima, Cairo, Egypt. 161 pp.
- Atwa, AA., 2014. Susceptibility of Spodoptera littoralis (Boisd.) to treated entomopathogenic rhabditids, *Heterorhabditis bacteriophora* and *Steinernema* sp. by different pesticides. J Biopest., 6(2):149-159.
- Atwa, AA., Shamseldean, MM., Yonis, FA. 2013. The effect of different pesticides on reproduction of entomopathogenic nematodes. Turk. J.Entomol., 37 (4):493-502
- Barbara, KA., Buss, EA. 2005. Integration of Insect Parasitic Nematodes (Rhabditida Steinernematidae) with insecticides for control of pest Mole Cricket (Ortoptera: Grylotalpidae: Scapteriscus spp.). J. Econ. Ent., 98(3): 689.
- Baweja, V., Sehgal, SS.1997. Potential of *Heterorhabditis* bacteriophora Poinar (Nematode, Heterorhabditidae) in parasitizing Spodoptera litura Fabricius in response to malathion treatment. Acta Parasit . Med.Entomol.Sinica,42:168-172.
- Bednarek, A., Popowska-nowak, E., Pezowicz, E., Kamionek, M. 2004 Integrated methods in pest control: effect of insecticides on entomopathogenic fungi (*Beauveria* bassiana(Bals) vuill., B. brongniartii (Sacc.) and nematodes (*Heterorhabditis megidis* Poinar, Jackson, Klein, Steinernema feltiae Filipjev, S. glaseri Steiner). Pol. J. Ecol., 52(2): 23.
- Bednarek,A., Popowska Nowak E., Pezowicz,E. Kamionek,M., Smits,PH.2000. Influence of insecticides, carbosulfan and carbofuran on the mortality and pathogenity of entomopathogenic nematodes and fungus. Proceedings of the 7th European meeting of the IOBC-WPRS Working group: Insect pathogens and insect parasitic nematodes, Capturing the potential of biological

control, held in Vienna, Austria from March 22-26, 1999. Bulletin .23(2): 115-117.

- Chen, SL., Han, XY., Moens, M. 2003. Effect of chlorpyrifos on infectivity and survival of Steinernema feltiae. Russian J.Nematol., 11: 1-6.
- Cheng, HH., Bucher, GE. 1972. Field comparison of the neoaplectanid nematode DD-136 with diazinon for control of *Hylemia* spp. on tobacco. J.Econ.Entomol., 65: 1761-1763.
- Cuthbertson, AG., Mathers, JJ., Northing, P., Prickett, AJ., Walters, KF. 2008. The integrated use of chemical insecticides and the entomopathogenic nematode, *Steinernema carpocapsae* (Nematoda:Steinernematidae), for the control of sweet potato whitefly, *Bemisia tabaci* (Hemiptera: Aleyrodidae). Insect Sci.,15:447-453.

Dalvi,LP.,Andrade,GS.,Pratissoli,
 Polanczyk,RA.,Melco,RL.2011.Compatibility
 of
 biological agents to control Spodoptera frugiperda
 (Lepidoptera: Noctuidae). Agrartan, Grande Dourados,
 4(12):79-83.

- Das, JN., Divakar, BJ.1987 Compatibility of certain pesticides with DD-136 nematode. Plant Protection Bulletin (India)., 39:(1/2) 20-22.
- De Nardo, EAB., Grewal. PS. 2003. Compatibility of *Steinernema feltiae* (Nematoda: Steinernematidae) with pesticides and plant growth regulators used in glasshouse plant production. Biocontrol Sci.Techn., 13:441-448.
- Dembilio, O., Llacer, E., Martinez de Altube, MM., Jacas, JA. 2010. Field efficacy of imidacloprid and *Steinernema carpocapsae* in a chitosan formulation against the red palm weevil *Rhynchophorus ferrugineus* (Coleoptera: Curculionidae) in *Phoenix canariensis*. Pest Manag. Sci., 66: 365-370.
- Devi, G. 2011.Influence of agrochemicals and botanicals on the mortality of entomopathogenic nematodes (Meghalaya isolates).Indian J.Nematol.,41(2):127-130.
- Devindrappa , Jagadeesh P. , Manjunatha, T., Gowda , R., Vijayakumar. 2017. Compatibility of Steinernema carpocapsae and Heterorhabditis indica with insecticides registered against Helicoverpa armigera (Lepidoptera: Noctuidae). J.Biol.Control., 31(2): 95-101.
- El-Kifl, TAH., Sammour, EA. 1988. Possible use of the endoparasitic nematode *Neoaplectana carpocapsae* (Weiser) combined with the insecticide hostathion for controlling the cutworm, *Agrotis ipsilon* (Hufn.) Bulletin of the Entomological Society of Egypt, Economic Series. 17: 215-223.
- Fedorko, A., Kamionek M., Kozlowska J., Mianowska E. 1977b. The effect of vydate-oxamyl on nematodes of different ecological groups. Pol. Ecol. Stud.,3:89-93.
- Fedorko, A., Kamionek, M., Kozlowska, J., Mianowska, E. 1977a. The effects of some insecticides on nematodes of different ecological groups. Pol. Ecol.Stud., 3:79-88.
- Forschler, BT., All, JN. ,Gardener, WA. 1987. *Steinernema feltia* activity and infectivity in response to herbicide exposure in aqueous and soil environments. J.Invertebr.Pathol., 55: 375-379.
- Fujiie, A., Yokoyama, T., Fujikata, M., Sawada, M., Hasegawa, M. 1993. Pathogenicity of an entomogenous nematode, *Steinernema kushidai* Mamiya (Nematode : Steinernematidae), on *Anomala cuprea* (Coleoptera:Scarabaeidae).JPN J.Appl.Entomol. Zool.,37:53-60.

- Garcia-del-Pino, F ., Jove, M. 2005. Compatibility of entomopathogenic nematodes with fipronil. J.Helminthol., 79(4): 333-337.
- Gaugler, R., Campbell, JF.1991. Behavioural response of the entomopathogenic nematodes *Steinernema carpocapsae* and *Heterorhabditis bacteriophora* to oxamyl. Ann.Appl.Biol., 119(1): 131-138.
- Glazer, I., Salame, L., Segal, D. 1997. Genetic enhancement of nematicide resistance in entomopathogenic nematodes. Biocontrol Sci Techn., 7(4) 499-512.
- Gordon, R., Chippett, J., Tilley, J. 1996. Effects of 2 carbamates on infective juveniles of *Steinernema carpocapsae* All strain and *Steinernema feltiae* Umea strain. J Nematol., 28:310-317.
- Grewal PS. Formulation and Application technology. In: Gaugler R, editor. Entomopathogenic Nematology. CABI Publishing.CAB International, Wallingford. 2002:311-332.
- Grewal, PS., Weber, T., Batterley, DA. 1998. Compatibility of the insect parasitic nematodes, *Steinernema feltiae*, with chemicals used in mushroom production. Mushroom News., 46: 6-10.
- Grewal, PS, Richardson, PN., Collins, G. Edmondson, RN.1992.Comparative effects of Steinernema feltiae(Nematoda: Steinernematidae) and insecticides on yield and cropping of the mushroom, *Agaricus bisporus*.Ann.Appl.Biol., 121:511-520.
- Griffin, CT., Boemare, NE., Lewis, EE. Biology and behaviour. In: Grewal, P. S., Shapiro-Ilan D. I. editors. Nematodes as Biocontrol agents. Wallingford, UK, CABI, 2005:47-59.
- Gupta, P., Siddiqui, MR. 1999. Compatibility studies on *Steinernema carpocapsae* with some pesticidal chemicals. Indian J Entomol., 61: 220-225.
- Gutierrez, CR., Campos-Herrera., Jimenez, J. 2008. Comparative study of the selected agrochemical products on *Steinernema feltiae* (Rhabditida: Steinernematidae). Biocontrol Sci Techn., 18:101-108.
- Hara, AH., Kaya HK. 1982. Effects of selected insecticides and nematicides on the *in vitro* development of the entomogenous nematode *Neoaplectana carpocapsae*. J.Nematol., 14(4): 486-491.
- Hara, AH., Kaya, HK. 1983a. Development of the entomogenous nematode, *Neoaplectana carpocapsae* (Rhabditida: Steinernematidae), in insecticide-killed beet armyworm (Lepidoptera: Noctuidae). J.Econ.Entomol., 76(3): 423-426.
- Hara, AH., Kaya, HK. 1983b. Toxicity of selected organophosphate and carbamate pesticides to infective juveniles of the entomopathogenous nematode Neoplectana carpocapsae (Rhabditida: Steinernematidae). Environ. Entomol., 12: 496-501.
- Head, J., Walters, KFA., Langton, S. 2000 Compatibility of the entomopathogenic nematode, *Steinernema feltiae*, and chemical insecticides for the control of the South American leafminer, *Liriomyza huidobrensis*. BioControl., 45: 3, 345-353.
- Heungens, A., Buysse, G. 1987 Toxicity of several pesticides in water solution on *Heterorhabditis* nematodes. Mededelingen Van de Faculteit Landbouwwetens – chappen Rijksuniversiteit Gent., 52(2): 631-638.
- Hoy, MA. 1995. Multitactic resistance management: an approach that is long overdue. Fla.Entomol., 78:443-451.
- Hussaini, SS., Satya, KJ., Hussain, MA.2001a Tolerance of some indigenous entomopathogenic nematode isolates to

pesticides and their effect on multiplication. Current Nematol., 12(1-2): 29-34.

- Hussaini,SS., Singh,SP., Shakeela,V. 2001b. Compatibility of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae: Rhabditida) with selected pesticides and their influence on some biological traits. Entomon., 26(1): 37-44.
- Ishibashi, N., Takii, S. 1993. Effects of insecticides on movement, nictation, and infectivity of *Steinernema carpocapsae*. J.Nematol., 25:204-213.
- Ishibashi,N. Integrated control of insect pests by Steinernema carpocapsae. In: Bedding, RA., Akhurst, R., Kaya, H.K. editors. Nematodes and the biological control of insect pests. CSIRO Publications, Melbourne. 1992:105-113.
- Jaworska, M., Gorczyca, A. 2002. The effect of metal ions on mortality, pathogenicity and reproduction of entomopathogenic nematodes *Steinernema feltiae* Filipjev (*Rhabditida, Steinernematidae*) .Pol J Environ Stud .11(5) : 517-519
- Jaworska, M., Sepiol, J., Tomasik, P. 1996. Effect of metal ions under laboratory conditions on the entomopathogenic *Steinemema carpocapsae* (*Rhabditida: Steinemematidae*).Water Air Soil Poll., 88: 331
- Jaworska, M.1990. Effect of some insecticides on entomophilic nematodes. Zeszyty problemowe Problemowe Postepo'w Nauk Rolniczychi. 391:73-79.
- Jones, D.G. Piperonyl butoxide. The Insecticide Synergist. Academic Press. London, 1998:147-149.
- Kaya H.K., Burlando T.M., Choo H.Y. and Thurston G.S., 1995. Integration of entomopathogenic nematodes with Bacillus thuringiensis or pesticidal soap for control of insect pests. Biol Control., 5: 432-441.
- Kaya, HK., Burlando, TM. 1989. Infectivity of *Steinernema feltiae* in fenamiphos treated sand. J.Nematol., 21(3):434-436.
- Kermarrec, A. , Mauleon, H. 1989.Synergy between chlordecone and *Neoaplectana carpocapsae* Weiser (Nematoda: Steinernematidae) in the control of *Cosmopolites sordidus* (Coleoptera: Curculionidae). Rev.Nematologie., 12:324-325.
- Koppenhofer, AM., Cowles, RS., Cowles, EA., Fuzy, EM., Kaya, HK. 2003 Effect of neonicotinoid synergists on entomopathogenic nematode fitness. Entomologia Experimentalis et Applicata., 106: 1, 7-18.
- Koppenhofer, AM., Cowles, RS., Cowles, EA., Fuzy, EM., Baumgartner, L. 2002. Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biol Control., 24(1): 90-97.
- Koppenhöfer, AM., Fuzy, EM. 2008. Effect of the anthranilic diamide insecticide, chlorantraniliprole, on *Heterorhabditis bacteriophora* (Rhabditida: Heterorhabditidae) efficacy against white grubs (Coleoptera: Scarabaeidae). Biol Control., 45: 93-102.
- Koppenhofer, AM., Kaya HK. 1998. Synergism of imidacloprid and an entomopathogenic nematode: a novel approach to white grub (Coleoptera: Scarabaeidae) control in turfgrass. J Econ. Entomol. 91(3) :618-623
- Koppenhofer, AM., Grewal, PS. . Compatibility and interactions with agrochemicals and other biocontrol agents. In: Grewal, P.S, Ehlers, R.U and Shapiro-Ilan, D.I,editors. Nematodes as biocontrol agents, Wallingford,UK: CABI International. 2005:363-381.
- Koppenhofer, AM., Grewal, PS., Kaya, HK. 2000a. Synergism of imidacloprid and entomopathogenic nematodes against

white grubs: the mechanism. Entomol Exp Appl.,94(3):283-293.

- Koppenhofer, AM., Brown,IM., Gaugler,R., Grewal,PS., Kaya,HK., Klein,MG. 2000b. Synergism of entomopathogenic nematodes and Imidacloprid against white grubs: Greenhouse and Field Evaluation. Biol. Control.,19:245-251
- Kotze, AC.1997.Cytochrome P450 monooxygenase activity in*Haemonchus contortus* (Nematoda). Int. J. Parasitol., 27:33.
- Kulkarni, N., Paunikar, S., Mishra, VK., Daksh, S. 2013. Tolerance of entomopathogenic nematode, *Steinernema carpocapsae* to some modern insecticides and biopesticides. Ann. Entomol., 31(1): 129-134
- Kumar, HK., Gundappa, M., Rajkumar, B., Khan, RM. 2015. Effect of Insecticides on the Survival and Infectivity of *Steinernema abbasi* (CISH EPN-1). Indian J.Nematol., 45(1): 48-51.
- Kumar, R., Sing, R., Walia, RK., Walia, KK .2013.Compatibility of *Steinernema asiaticum* and *Heterorhabditis bacteriophora* with registered Insecticides and Bt for Control of *Plutella xylostella* under laboratory Conditions. Entomol Gener., 34 (4): 297-301.
- Laznik, Z., Toth, T., Lakatos, T., Vidrih, M., Trdan. S. 2010. Control of the Colorado potato beetle (Leptinotarsa decemlineata [Say]) on potato under field conditions: a comparison of the efficacy of foliar application of two strains of Steinernema feltiae (Filipjev) and spraying with thiametoxam. J Plant Dis Protect., 117(3):129-135.
- Laznik, Z., Trdan, S. 2012. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Manag Sci. DOI 10.1002/ps.3614.
- Laznik, Z., Znidarcic, D. and Trdan. S. 2011. Control of *Trialeurodes vaporariorum* (Westwood) adults on glasshouse-grown cucumbers in four different growth substrates: an efficacy comparision of foliar application of *Steinernema feltiae* (Filipjev) and spraying with thiamethoxam. Turk J Agric For., 35:631-640
- Le Vieux, PD., Malan, AP.2015. Prospects for Using Entomopathogenic Nematodes to Control the Vine Mealybug, *Planococcus ficus*, in South African Vineyards. S. Afr. J. Enol. Vitic., 36 (1):59-70.
- Lomer, CJ., Bateman, RP., Dent, D., Groote, HDe, Deuro Kpindou, OK., Kooyman, C., Langewald, J., Ouambama, Z., Peveling, R., Thomas, M.1999.Development of strategies for the incorporation of biological pesticides into the integrated management of locusts and grasshoppers.Agr Forest Entomol.,1:71-88.
- Magnabosco, MEB., Andalo, V., Lucas, S de F.2019. Compatibility between entomopathogenic nematodes and crop protection products used in maize seed treatment. Semina: Ciencias Agrarias., 40(6):2487.
- Mannion, CM., Winkler, HE., Shapiro, DI., Gibb, T.2000.Interaction between halofenozide and the entomopathogenic nematode *Heterorhabditis marelatus* for control of Japanese beetle(Coleoptera: Scarabaeisae) larvae. J Econ Entomol., 93(1):48-53
- Mbata, GN. Shapiro Ilan, D.2013.The potential for controlling *Pangaeus bilineatus* (Heteroptera: Cydnidae) using a combination of entomopathogens and an insecticide. J Econ Entomol., 106:2072-2076.

- Nabil El-Wakeil, Nawal, G., Ahmed, S., Christa, V. Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. In: Trdan S. Editor. Insecticides development of safer and more effective technologies.Intech, Croatia. 2013:1-56.
- Nardo, EAB.de ., Grewal, PS. 2003. Compatibility of Steinernema feltiae (Nematoda: Steinernematidae) with pesticides and plant growth regulators used in glasshouse plant production. Biocontrol Sci Techn., 13: 441-448.
- Negrisoli, Jr A.S., Garcia,M.S., Negrisoli, CRCB. 2010. Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for *Spodoptera frugiperda* (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Prot.,29(6): 545-549.
- Nermut, J., Mracek. Z. 2010. The influence of pesticides on the viability and infectivity of entomopathogenic nematodes (Nematoda: Steinernematidae). Russ J Nematol., 18:141-148.
- Nishimatsu,T., Jackson, JJ.1998. Interaction of insecticides, entomopathogenic nematodes, and larvae of the western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol., 91(2):410-418.
- Patel, MN., Wright, DJ. 1996 The influence of neuroactive pesticides on the behaviour of entomopathogenic nematodes. J Helminthol., 70(1): 53-61.
- Paulo Henrique de, SS., Alcides, M. Jr., Vanessa, A. 2014.Effects of some insecticides on the neutral lipid percentage, survival and infectivity of S.carpocapsae All and H.amazonensis JPM 4.Nematoda.pp.1-7.
- Pervez, R., Ali, SS. 2012. Compatibility of entomopathogenic Nematodes (Nematoda: Rhabditida) with pesticides and their infectivity against Lepidopteran insect pest .Trends in Biosciences., 5 (1): 71-73.
- Peters, A., Poullot, D. 2004. Side effects of surfactants and pesticides on Entomopathogenic nematodes assessed using advanced IOBC guidelines. IOBC/WPRS Bulletin., 27(6): 67-72.
- Peters, A.2003. Pesticides and entomopathogenic nematodes current status and future work. Pesticides and Beneficial Organisms IOBC/ WPRS Bulletin .,26 (5) : 107 -110.
- Priya, P., Subramanian, S.2008.Compatibility of entomopathogenic nematodes *Heterorhabditis indica* (Poinar, Karunakar and David) and *Steinernema glaseri* (Steiner) with insecticides.J.Biol.Control.,22(1):225-230.
- Radova, S. 2010. Effect of selected pesticides on the vitality and virulence of the entomopathogenic nematode *Steinernema feltiae*(Nematoda: Steinernematidae). Plant Protect Sci., 46:83-88.
- Radova,S. 2011. Effects of Selected Pesticides on Survival and Virulence of Two Nematode Species. Polish J. of Environ. Stud., 20(1): 181-185.
- Rao, PSP., Das, PK., Padhi, G. 1975 Note on compatibility of DD-136 (*Neoaplectana dutkyi*), an insect parasitic nematode with some insecticides and fertilizers. Indian J. Agric Sci., 45:(6) 275-277.
- Rovesti, L. 1989 .Response of *Steinernema* spp. and *Heterorhabditis* spp. to chemical pesticides. Proceeding of the International Conference. Biopesticides. Theory and Practice, pp. 186-190.
- Rovesti, L., Deseo, KV. 1990 Compatibility of chemical pesticides with the entomopathogenic nematodes, *Steinernema carpocapsae* Weiser and *S. feltiae* Filipjev (Nematoda: Steinernematidae) Nematologica., 36:(2) 237-245.

- Rovesti, L., Deseo, KV. 1991 Compatibility of pesticides with the entomopathogenic nematode, *Heterorhabditis heliothidis*. Nematologica. 37:(1) 113-116
- Rovesti, L., Fiorini, T., Bettini, G., Heinzpeter, EW., Tagliente, F.1990. Compatibility of *Steinernema* spp. and *Heterorhabditis* spp. with pesticides - Compatibilita de Steinernema spp. e Heterorhabditis spp. con fitofarmaci Informatore Fitopatologico. 40:(9) 55-61.
- Rovesti, L., Heinzpeter, EW., Tagliente, F., Deseo, KV. 1988.
 Compatibility of pesticides with the entomopathogenic nematode *Heterorhabditis bacteriophora* Poinar (Nematoda: Heterorhabditidae)., Nematologica 34(4): 462-476
- Saleh, MME., Sammour, EA.1995. Interactions of three insecticides and two entomopathogenic nematodes against *Spodoptera littoralis* (Boisd.) larvae. Egypt J Biol Pest Co., 5(2): 119-122.
- Selkirk, ME., Henson, SM., Russel, WS., Hussein, AS. Acetylcholinesterase secretion by nematodes. In: Kennedy MW, Harnett W. editors. Parasitic Nematodes: Molecular Biology, Biochemistry and Immunology. CABI, New York, 2001:211-229.
- Shamseldean, MM., Atwa AA., Yonis, FA. 2005. Effect of different pesticides on the survival of entomopathogenic nematodes. Proceeding of The Third Conference of applied entomology, March 23-24, Faculty of science, Cairo University. Pp. 111-123.
- Sirjusingh, C., Mauleon, H., Kermarrec, A.1991 Compatibility and synergism between entomopathogenic nematodes and pesticides for control of *Cosmopolites sordidus* Germar Rencontres Caraïbes en lutte biologique. Proceedings of the Caribbean meetings on biological control, Guadeloupe, 5-7 November 1990 1991, 183-192 Eds. Pavis C., Kermarrec A. (eds). Institut National de la Recherche Agronomique. Paris, France pgs. 183-192.
- Tavares, FM.,Batista Filho, A.,Leite, LG., Almeida, LC., Goulart, TM. 2009. Efeito sinergico de combinacoes nematoides entomopatogenicos entre (Nemata:Rhabditida) insecticidas quimicos e na mortalidade de Sphenophorus levis (Vaurie) (Coleoptera:Curculinidae). BioAssay, Piracicaba, 4(7):1-10.
- Vainio, A. 1992. Guideline for laboratory testing of the sideeffects of pesticides on entomophagous nematodes *Steinernema* spp. IOBC/WPRS Bulletin., 15: 145-147.
- Vainio, A. 1994 Effect of pesticides on long-term survival of Steinernema feltiae in the field IOBC/WPRS Working Group Insect Pathogens and Insect Parasitic Nematodes 4th European meeting Microbial control of pests Edited by P.H. Smits IOBC/WPRS Bulletin., 17(3):70-76.
- Vainio, A., Hokkanen H. 1990. Side effects of pesticides on the entomophagous nematode *Steinernema feltiae*, and the entomopathogenic fungi *Metarhizium anisopliae* and *Beauveria bassiana* in the laboratory. Proceedings of the International Colloquium on Invertebrate Pathology and Microbial Control., 5:334.
- Van Niekerk, S., Malan, AP. 2014. Compatibility of *Heterorhabditis zealandica* and *Steinernema yirgalemense* with agrochemicals and biological control agents. Afr Entomol., 22(1): 49-56.
- Williams, EC., Walters, KFA.1994.Nematode control of leafminers: Efficacy, timing and temperature. Brighton Crop Protection Conference Pests and Diseases .1079-1084.

- Wright, DJ., Perry, RN. Physiology and biochemistry. In: Gaugler R .editor. Entomopathogenic nematology. CABI,New York, 2002:145-168.
- Yan, X., Moens, M., Han, R., Chen, S., Clercq, PD. 2012. Effects of selected insecticides on osmotically treated entomopathogenic nematodes. J Plant Dis Prot.,119(4): 152-158.
- Zadji, L.2014. Entomopathogenic nematodes as potential control agents of termites in citrus in Benin. PhD thesis. Faculty of sciences. Department of Biology, Ghent University, Belgium pp.187.
- Zhang, L., Shonu, T., Yamanaka, S., Tanabe, H. 1994. Effects of insecticides on the entomopathogenic nematode Steinernema carpocapsae Weiser. Appl Entomol Zool., 29(4): 539-547.
- Zimmerman, RJ., Cranshaw, WS. 1990. Compatibility of three entomogenous nematodes (Rhabditida) in aqueous solutions of pesticides used in turfgrass maintenance. J Econ Entomol. 83 (1): 97-100.
