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between lump waves and kink soliton. In this regard, we cast the model into it Hirota bilinear form 
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INTRODUCTION 
 
Generally, all the basic equations of physics are nonlinear and such types of nonlinear evolution equations (NLEEs) are often

difficult to get exact solution (Gu et al, 1999; Fan
et al, 2016; González-Gaxiola, 2017; Zaid Odibat
Wazwaz, 2013; Roshid, 2017; Roshid et al, 2017; 
Guo et al, 2012; Li et al, 2013). So, to seek the exact solutions of NLEEs still have very attraction to diverse group of researcher. The 

Darboux transformation (Gu et al., 1999), the tanh
homogeneous balance method (Wang et al, 1996), the Jacobi elliptic function expansion method (
method (Wang et al, 2005), Hirota bilinear method (
approaches to obtain the exact solutions of NLEEs. Among those methods, the Hirota's bilinear method is rather heuristic and 
significant features that make it practical for the determination of multiple soliton solutions, and for multiple singular so
(Roshid, 2017) for an extensive class of NLEEs in a direct method. Recently, we have seen two types of phenom
fission and soliton fusion respectively (Roshid, 2017
plasma physics, electromagnetic, and passive random walker dynamics (
wave solutions have drawn a big attention of mathematicians and physicists globally for amusing class of lump
types of phenomena are found in different fields in physics such as plasmas, the deep ocean, no
al, 2005; Roshid, 2017; Kharif et al, 2009). On the basis of Hirota bilinear forms, it is natural and interesting to hunt for rogue type 
solutions of NLEEs (Guo et al, 2012; Li et al
determine interaction between lump waves and kink soliton
periodic lump wave through a test function in
waves and lump waves are presented with an entire analytic derivation. Some graphs are incorporated to visualize the dynamics
obtain wave solutions. 
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ABSTRACT 

In this paper, we reveal a (3+1)-dimensional nonlinear evolution equation to determine interaction 
between lump waves and kink soliton. In this regard, we cast the model into it Hirota bilinear form 
firstly. We offer periodic lump wave through a test function in
cosine functions. We also consider test function as a combination of a general quadratic polynomial 
with exponential function to reveal interaction of lump wave and kink soliton. Finall
of solitary waves and lump waves are presented with an entire analytic derivation. Some graphs are 
incorporated to visualize the dynamics of the obtained wave solutions.

open access article distributed under the Creative Commons Attribution
provided the original work is properly cited. 

Generally, all the basic equations of physics are nonlinear and such types of nonlinear evolution equations (NLEEs) are often

Fan, 2000; Zhang, 2004; Wang et al, 1996; Liu et al, 2001; 
Odibat, 2017; Bira, 2015; Shakeel et al, 2016; Hossen 
, 2017; Muller et al, 2005; Roshid , 2017; Kharif  et al., 2009; 

, 2013). So, to seek the exact solutions of NLEEs still have very attraction to diverse group of researcher. The 

1999), the tanh-function method (Fan, 2000), the extended tanh-function method (
, 1996), the Jacobi elliptic function expansion method (Liu 

, 2005), Hirota bilinear method (Roshid et al, 2017; Roshid, 2017) and so on which many powerful and systematic 
approaches to obtain the exact solutions of NLEEs. Among those methods, the Hirota's bilinear method is rather heuristic and 
significant features that make it practical for the determination of multiple soliton solutions, and for multiple singular so

) for an extensive class of NLEEs in a direct method. Recently, we have seen two types of phenom
Roshid, 2017) in many nonlinear science and engineering field such as the gas dynamics, laser, 

plasma physics, electromagnetic, and passive random walker dynamics (Wazwaz, 2013; Roshid, 2017; Ros
wave solutions have drawn a big attention of mathematicians and physicists globally for amusing class of lump
types of phenomena are found in different fields in physics such as plasmas, the deep ocean, nonlinear optic and even finance (

). On the basis of Hirota bilinear forms, it is natural and interesting to hunt for rogue type 
et al, 2013). In this paper, we consider a (3+1)-dimensional nonlinear evolution equation to 

interaction between lump waves and kink soliton. That’s why we cast the equation into Hirota bilinear form firstly. Then we offer 
periodic lump wave through a test function in-terms of exponential and periodic cosine functions. Finally, the interactions of solitary 
waves and lump waves are presented with an entire analytic derivation. Some graphs are incorporated to visualize the dynamics
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dimensional nonlinear evolution equation to determine interaction 
between lump waves and kink soliton. In this regard, we cast the model into it Hirota bilinear form 

lump wave through a test function in-terms of exponential and periodic 
cosine functions. We also consider test function as a combination of a general quadratic polynomial 
with exponential function to reveal interaction of lump wave and kink soliton. Finally, the interactions 
of solitary waves and lump waves are presented with an entire analytic derivation. Some graphs are 
incorporated to visualize the dynamics of the obtained wave solutions. 
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Generally, all the basic equations of physics are nonlinear and such types of nonlinear evolution equations (NLEEs) are often very 
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significant features that make it practical for the determination of multiple soliton solutions, and for multiple singular soliton solutions 
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2. Lump and solitary wave solutions to the Breaking Soliton equation 
 
2.1 The bilinear form of (3+1) D nonlinear evolution equation 
 
Consider the (3+1)-dimensional nonlinear evolution equation as 
 

033)(3  zzxxxyxxxxyyt uuuuuu .                                                                     (1) 

 
Through the dependent variable transformation as 
 

xfu )(ln2 ,                                                                                                                     (2) 

 
Eq.(1) can be reduce to bilinear D operator form. 
 

Substitute the equation (2) with ),,,( tzyxff   into equation (1) we obtain 
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Using formula Eq.(4), Eq.(3)reduces to  
 

033  xyxxxxyxyxxxxxxy ffffffff .                                                                   (5) 

 
2.2 Lump wave solutions  
 
Let us adopt that Eq. (5) has a ansatz in the following form: 
 

 )exp()cos( 876543211 tazayaxatazayaxalf )(exp{ 87652 tazayaxal 
 

 (6) 

 

where ,ia  81  i
 
are arbitrary constants to be determined later. Setting Eq. (6) into bilinear form Eq. (5), we obtain some 

polynomials which are functions of the variables zyx ,, and t . Equating all the coefficient of sincos, and expto be zero, we 

can obtain the set of algebraic equations for ,ia  81  i  . Solving the system with the aid of symbolic computation system 

Maple, gives the following relations between the parameters ia : 
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Therefore, substituting Eq. (7) and Eq. (6) along with Eq.(2) yields the following periodic lump wave solution, 
 

xfu )(ln2 ,  (8) 

where 
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Fig.1 shows the sketch of lump waves occurs periodically for the values ,22 a 1,1 2183  llaa , (a) gives 3D views 

from which one can reveal the  lump wave or one dimensional rogue wave feathers in the xt plane at 0 zy . It is also 

clear that the Fig.1 of Eq. (8) is the familiar eye-shaped lump wave solution which has a local deep whole and a height peak 
(clears from the views (b)) in each lump wave. Besides this, we discover that lump wave has the uppermost peak in its surrounding 
waves. The figures in the other plane exhibits similar characteristics but periodicity of lump may differ.   
 

  
(a) (b) 

 

Fig 1. Lump wave solution (8) for Eq. (1) by choosing suitable parameters:
  

,22 a 1,1 2183  llaa .(a) Perspective view 

of the wave at .0 zy (b) Corresponding contour plot of the wave. 
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Therefore, substituting Eq. (9) and Eq. (6) along with Eq.(2) yields the following periodic lump wave solution, 

xfu )(ln2 , (10) 
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Fig.2 shows the sketch of lump waves occurs periodically for the values ,22 a 1,1 2183  llaa , (a) gives 3D views 

from which one can reveal the  lump wave or one dimensional rogue wave feathers in the xt plane at 0 zy . It is also 

clear that the Fig.2 of Eq. (10) is the familiar eye-shaped lump wave solution which has a local deep whole and a height peak 
(clears from the views (b)) in each lump wave. Besides this, we discover that lump wave has the uppermost peak in its surrounding 
waves. The figures in the other plane exhibits similar characteristics but periodicity of lump may differ (see Fig-2(c) and (d) in the 

xy plane).   

 

  
(a) (b) 

  
(c) (d) 

 
Fig. 2. Lump wave solution (10) for Eq. (1) by choosing suitable parameters:

 ,22 a 1,1 2183  llaa .(a) Perspective view of the 

wave at .0 zy (b) Corresponding contour plot of the wave. 

 
3.Conclusions 
 
This paper focuses  based on the Hirota bilinear process, we have adequately offered two collision phenomena between a solitary 
type lump wave and a periodic cosine function solution to the (3+1)-dimensional nonlinear evolution equation. The lump wave 
comes in term of two exponentials and  periodicity comes in term of cosine function and after collision the interaction exhibits as 
periodic breather type periodic lump waves. Also the results have been  presented graphically via 3D plot, contour plots to realize 
the real dynamics of the interactive waves. These outcomes are incorporated to visualize the dynamics of the obtained wave solutions in 
the study of water waves in mathematical physics and engineering phenomena.  
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