

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 12, Issue, 04, pp.11021-11026, April, 2020

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

DOI: https://doi.org/10.24941/ijcr.38453.04.2020

RESEARCH ARTICLE

EFFECT OF OXIDATIVE STRESS ON SPERM CELLS

Alejandro Córdova-Izquierdo^{1*}, Adrian Emmanuel-Iglesias Reyes², María de Lourdes Juárez-Mosqueda³, Juan Eulogio Guerra-Liera⁴, Rubén Huerta-Crispín⁵, Abel E. Villa-Mancera⁵, Pedro Sánchez-Aparico⁶, Armando Gómez-Vázquez⁷ and Raúl Sánchez-Sánchez⁸

¹Department of Agricultural and Animal Production, University Autonomous Unit Xochimilco, Mexico City ²Master's Degree in Agricultural Sciences, University Autonomous Unit Xochimilco, Mexico City ³Department of Morphology, FMVZ-UNAM, Mexico City ⁴Faculty of Agronomy, Autonomous University of Sinaloa, Mexico ⁵Faculty of Veterinary, Benemérita Autonomous University of Puebla, Mexico ⁶Faculty of Veterinary, Autonomous Mexico State University, Mexico ⁷Division of Agricultural Sciences, Autonomous Juarez University of Tabasco, Mexico ⁸Department of Reproduction, INIA, Madrid Spain

ARTICLE INFO

Article History: Received 14th January, 2020 Received in revised form 05th February, 2020 Accepted 18th March, 2020 Published online 30th April, 2020

Key Words: Spermatozoa, Oxidative Stress, Free radicals, Reproduction.

ABSTRACT

Free radicals are unstable molecules that have an unpaired electron in their last orbital, which makes them highly unstable agents. In medicine it has been discovered that they play an important role in cell signaling and without them some cells such as leukocytes or sperm could not perform their biological functions. To protect itself from these oxidizing agents, the cell has a defense system based on antioxidants; However, when this balance is lost and oxidizing agents exceed the cellular antioxidant capacity, the cell enters oxidative stress, which affects cellular components such as proteins, nucleic acids, lipids, amino acids, carbohydrates, among others. In the case of spermatozoa, due to their high metabolic rate, they produce large quantities of Oxygen Reactive Species (ROS), decreasing sperm motility, alterations in cytoplasmic components, modifications in genetic material or sperm death. In this chapter a review is made of a brief history of how the toxicity of oxygen and free radicals was discovered, the oxidative stress in cells, the effect of oxidative stress in the cytoplasmic sperm membrane, in the spermatic mitochondria, in the spermatic acrosome , in the sperm DNA and in the fertility of the female and the male.

Copyright © 2020, Anusuya Ramasamy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Alejando Córdova Izquierdo, Adrian Emmanuel Iglesias Reyes, Alda Roció Ortiz Muñiz et al. 2020. "Effect of oxidative stress on sperm cells", International Journal of Current Research, 12, (04), 11021-11026.

INTRODUCTION

Semen freezing is one of the most important procedures in the development of biotechnologies for assisted reproduction. Among the advantages that we can find in artificial insemination are: to keep the biological material viable for an indefinite time, the establishment of gene banks, the exchange of genetic material over very long distances, economically rationalize the ejaculate, improve the use of wild boar elite, an adequate availability of germinal material of economic interest for man and perform the collection of semen only in the most favorable reproductive seasons. However, the composition of the plasma membrane of the pig sperm, the large phospholipid layer (the comparison of bull sperm, which has a smaller layer

*Corresponding author: Alejando Córdova Izquierdo,

Department of Agricultural and Animal Production, University Autonomous Unit Xochimilco, Mexico City.

of skin), is the cause of the sperm cell. Free radical changes that occur during freezing, the occasion when the effects of sperm freezing occur in the wild boar affect the integrity of the plasma membrane, the acrosome, the nucleus, as well as mitochondrial functions and motility of spermatozoa (Restrepo *et al.*, 2012; Williams, 2013; Gallardo and Vargas, 2015; Yeste *et al.*, 2017). The purpose of this review is to publicize the main causes of ROS generation in sperm cells, as well as a brief explanation of how ROS is a part of sperm parts.

Background

Air is a vital element for any living being and is a mixture of gases based on nitrogen (78%), oxygen (21%), water vapor (variable between 0-7%), ozone, carbon dioxide (CO2), hydrogen and some noble gases such as krypton, neon, helium and argon. Of these, oxygen (which appeared approximately 2,500 million years ago) plays a vital role in the processes of aerobic life, being the second most abundant element in the

atmosphere (Villa and Ceballos, 2007; Sánchez et al., 2011; Mayorga et al., 2015). Antonio Lavoisier in the eighteenth century gives the name to "oxygen" which means "generator of acids", because despite having a therapeutic use, it was already known that it was a toxic substance, due to its great oxidizing power. In 1774 the toxic effects of the gas are demonstrated, 6 years later (1780) experiments are made of the use of oxygen in newborns; for 1878, the toxic effect of oxygen in the brain is documented by Paul Bert, manifested by the presence of convulsive crises to more than three atmospheres and in 1899, when trying to replicate the effect Bert, J. Lorrain Smith, reports fatal pneumonia in rats exposed to 73% oxygen for four days. In 1940, it is reported that babies with periodic breathing pattern improved with the use of oxygen to 70%, beginning the routine use of oxygen in premature babies. Between 1951 and 1956, it is demonstrated that oxygen was safe when it occurred in concentrations lower than 40%. Harman in 1954, stated that the life expectancy increases decreasing the degree of oxidative phenomena. Thus, throughout history, it has been described that the toxicity of O2 is higher the higher the metabolic rate of the species considered (Martínez, 2005; Sánchez et al., 2011).

In veterinary and human medicine have been discovered more and more agents that cause diseases in the body, some of them derived from metabolic processes of oxygen, among which are the production of energy, detoxification of harmful compounds and defense against pathogens; among which are free radicals (RL), which are highly reactive oxidation agents, which act as short-lived chemical intermediates on lipids, amino acids, carbohydrates and nucleic acids (Villa and Ceballos, 2007; Mayorga et al., 2015). The RL can be divided into: i) Reactive Oxygen Species (ROS), which are highly reactive molecules that constantly attack organisms through oxidation-reduction reactions, within this group are molecular oxygen (O2), superoxide anion (O21) hydrogen peroxide (H2O2), hydroperoxyl (HO2) and hydroxyl radical (OH); ii) the transition metals, which have unpaired electrons, and can exist as RL; and, iii) Reactive Nitrogen Species (ERN), which are capable of generating oxidative damage and cell death, within this group are nitric oxide (NO), peroxynitrite anion (ONOO-) and nitric dioxide (NO2). (Quintanar and Calderón, 2009, Berzosa, 2011, García et al., 2012).

The RL must be attenuated by different antioxidant defense systems, which involve enzymes and molecules; antioxidants are divided into enzymatic, also called endogenous production, is the first line of defense against the production of RL and are proteins with antioxidant capacity that are not consumed when reacting with the RL, among the most important of this group are catalase, superoxide dismutase and glutathione peroxidase; and the non-enzymatic ones that come mainly from the diet and are small liposoluble molecules, which unlike the enzymatic, are consumed during their antioxidant action, so they must be replaced, among the most important in this group are vitamins E, C, beta carotenes, retinol, uric acid, pyruvate, albumin, carnitine, taurine, hypotaurine, transferrin, ceruloplasmin, polyphenoids, flavonoids and trace elements (Villa, 2009, Gašparovic et al., 2010, Flores et al., 2011, Villalba, 2014; Gumbao, 2015). These antioxidant defense systems are linked in a cellular buffer system, where they add up and collaborate with each other, to deal with any oxidative aggression in cells, for example, non-enzymatic antioxidants can have synergistic effects in combination with enzymatic antioxidants, regenerating enzymatic antioxidants through the

donation of hydrogen, neutralizing molecular oxygen and catalyzing the synthesis or regeneration of non-enzymatic antioxidants (Quintanar and Calderón, 2009, Pisoschi and Pop, 2015). When there is an imbalance and the amount of RL exceeds the balance between oxidant production and antioxidant capacity, a phenomenon known as oxidative stress (EO) is generated, which has negative consequences on multiple cellular processes ((Flores *et al.*, 2011; Zepeda y Farías, 2013; Cota, 2014; Mayorga *et al.*, 2015).

Effect of oxidative stress on cells: Due to aerobic conditions, cells maintain a high concentration of oxidant products in their metabolism, such as RL, which are generated as a result of metabolism cellular physiological and in cellular concentrations are related to cell signaling processes or to fulfill their functions biological, including leukocytes that are recruited to the sites of infection by chemotactic factors and are able to eliminate microorganisms through phagocytosis, exposing them to high concentrations of ROS (superoxide and hydrogen peroxide) and other microbicidal products contained in cell granules; However, when EO exists, ROS can mainly affect cellular components such as proteins, nucleic acids, sugars and lipids (Quintanar and Calderón, 2009, Zepeda and Farías, 2013, Mayorga et al., 2015). Most of the main diseases that cause the death of animals and people or deteriorate their quality of life, are caused by the RL. Each cell of the body suffers about 10,000 impacts of free radicals per day, for this reason the EO has been the target of intense research in recent years, mainly in the implications on how mitochondria produce ROS, since they are of vital importance to understand their relationship with the pathogenesis of several chronic diseases such as cancer, osteoporosis, Alzheimer's, type 2 diabetes, neurodegenerative diseases and cardiovascular diseases such as heart failure (Zapata et al., 2007, Costa et al., 2012, Mayorga et al., 2015).

The spermatozoon was the first cell type in which the presence of ROS could be identified, because until a few years ago, ROS were considered toxic elements for sperm, however, the RL is currently known (mainly O2). -) in low concentrations in semen, play a fundamental role in their biological functions during sperm capacitation, sperm maturation, tyrosine phosphorylation, intergame interaction and the acrosomal reaction that occurs for fertilization of the oocyte; these phenomena are controlled by the mechanism of defense of enzymatic and non-enzymatic antioxidants, that when this balance is broken between the RL and the antioxidant defense system, damages are induced in the nucleic acids, proteins and lipids present in the membrane of the sperm, causing loss of mobility, decrease in viability and alterations in the intermediate piece, which finally produce a decrease in seminal quality or sperm death (Flores et al., 2011; Rodríguez et al., 2011; Villa et al. ., 2012, Santiani, 2013, Williams, 2013, Zhong and Zhou, 2013, Orozco et al., 2014, Dominguez et al., 2015, Gumbao, 2015, Mayorga et al., 2015, Paparella et al., 2015; Álvarez et al., 2017). A clear example of this is nitric oxide (NO), which has an important function in the sperm pathophysiology, since in low concentrations it favors the processes of sperm capacitation, the acrosomal reaction and the union to the zona pelucida; however, in high concentrations it leads to the formation of peroxynitrites, which alters sperm motility (Pérez, 2012). It has been observed that in the ejaculate, the main sources of ROS are leukocytes and abnormal sperm cells; although it has been proposed that there are other possibilities on the generation of intracellular

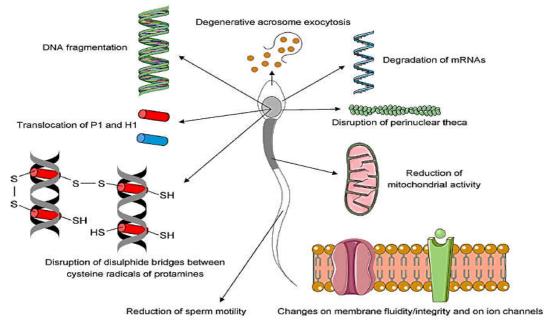


Figure 1. Lesions resulting from the freezing of pig semen (Modified from Yeste *et al.*, 2017)

ROS in the spermatozoon, such as the leakage of electrons from the mitochondrial transport chain, NADPH oxidase as a possible source of ROS and the generation of RL by means of nitric oxide in the post-acrosomal and equatorial regions, which can generate a change in the basal state of the oxidizing agents and induce changes in sperm activity (Mayorga *et al.*, 2015)

Effect of oxidative stress on the cytoplasmic sperm membrane: The spermatic membrane is asymmetric in its structure and functions. It is formed by an association of phospholipids, plasmamalgens and sphingomyelins in dynamic equilibrium with membrane proteins making it an easy target of oxidizing agents. Cholesterol and phospholipids are important in maintaining the structural integrity of membrane systems. In particular, the plasma membrane of the sperm possesses a large quantity of polyunsaturated fatty acids (PUFA), which are necessary for the acrosome reaction and the interaction with the oocyte membrane. On the other hand, the high content of polyunsaturated fatty acids in the plasma membranes of sperm makes them very susceptible to lipoperoxidation (LP), making it highly vulnerable to oxidative stress (Flores et al., 2011, Villa et al., 2012; Mayorga et al., 2015; Paparella et al., 2015). The low concentrations of antioxidant enzymes (catalases, dismutases, peroxidases and glutathione reductase) in the plasma membrane also convert sperm into cells susceptible to the attack of the RL (particularly the attack of hydroxyl radical OH and hydroperoxyl (HO2)), on all in the post-acrosomal region, causing alterations in its permeability (since ROS induces LP of the phospholipids of the membrane, which causes the appearance of "orifices"), affecting the Na + and Ca2 + pumps, causing these to enter cations into the sperm, altering the osmolarity, which causes the formation of few soluble calcium phosphates, depletion of ATP and activation by means of Ca2 + of proteolytic and phosphoglucolytic enzymes. It also damages the enzymes lactate dehydrogenase, pyruvate kinase, glyceraldehyde 3 phosphate dehydrogenase, ATPase; generating loss or reduction in mobility, protein and lipid damage, alterations in deoxyribonucleic acid (DNA), anomalies in its morphology, fertility problems and cell death

(Pulgar, 2009, Quintanar and Calderón, 2009, Villa *et al.*, 2009, Flores *et al.*, 2011, Orozco *et al.*, 2014, Thongrueang, Paparella *et al.*, 2015, *et al.*, 2017).

Effect of oxidative stress on sperm mitochondria: Mitochondria are considered one of the main cellular sources of ROS, which are responsible for regulating physiological processes such as transduction of intracellular signals, the response to oxidative stress, embryonic development, cell proliferation and adhesion, gene expression, and apoptosis (Mayorga et al., 2015). In the sperm mitochondria provide the highest amount of ATP, through glycolysis and oxidative phosphorylation, contributing to the formation of RL during these processes (Ramón, 2014, Flores and Vilanova, 2015, Mayorga et al., 2015). However, when there is disruption of the mitochondrial respiratory chain (during freezing), these are responsible for the formation and release of ROS. This interruption causes oxygen to undergo complete reductions producing, instead of water molecules, intermediate molecules such as superoxide anion, hydroxyl radical and hydrogen peroxide, triggering a phenomenon similar to apoptosis, responsible for both the death of sperm as well as the sublethal damages that decrease the half-life and fertilizing capacity of the cells (Figure 1) (Ortega, 2011). The freezing of semen also exerts an important damage in the mitochondria, since it has been demonstrated that the EO induces damage in the mitochondrial DNA, observing that the mutation spectrum of said DNA, in the spermatozoon can be 10 to 100 times greater than to nuclear DNA. This can be explained by the crosslinking of DNA proteins that cause RL, exchange of sister chromatids, damage to the structure of deoxyribose-phosphate, oxidation of nitrogenous bases, conversion of bases (the deamination of cytosine into uracil and of the 5methylcytosine in thymidine), ring openings, base release and chain breaking (one or two strands). This leads directly to a decrease in fertility (Quintanar and Calderón, 2009, Gupta et al., 2010, Mayorga et al., 2015, Paparella et al., 2015, Yeste et al., 2017).

Effect of oxidative stress on the spermatic acrosome: The acrosome is also affected by the action of the RL during the transport of the sperm through the epididymis, mainly by

hydrogen peroxide, since it inhibits the induction of the acrosomal reaction and damages the integrity of the acrosome, producing a malfunction at the time of fertilization of the oocyte (Córdova, 2010).

Effect of oxidative stress on sperm DNA: Much of the DNA damage in the sperm is generated by the EO. The damage that ROS exerts directly on sperm DNA can induce mutations, affecting the paternal genomics of the embryo and can be an indication of male fertility (Villa et al., 2012; Paparella et al., 2015). To demonstrate this, in studies where sperm were exposed to high concentrations of artificially produced ROS, a significant increase in DNA damage, decreased sperm motility and induction in apoptotic processes could be observed (Mayorga et al., 2015) . These damages in the chromatics sperm depends on endogenous factors such as in the testicles or the epididymis (during sperm maturation), and exogenous as DNA peroxidative damage, infections, immunological factors or various chemical agents; These may be related to failures in packaging, nuclear maturity, chromatin fragmentation, aneuploidies or DNA integrity defects (Mayorga et al., 2015, Paparella *et al.*, 2015)

In any part of the spermatogenesis can be induced a damage to the spermatic DNA, which despite being a multifactorial phenomenon and not being completely delimited, some of the factors that can produce irreversible damage is the generation of ROS, which come from the chain Respiratory, since these oxidative molecules react with the nitrogenous bases and with deoxyribose, causing DNA fragmentation, problems in the compaction and winding of the DNA inside the chromatin, deletions, mutations, translocations, degradation of purine or pyrimidic bases, rupture of chains and crosslinks between proteins and DNA. The magnitude of damage induced by RL during sperm transit through the epididymis depends on the levels of these produced by immature sperm, the presence of epithelial cells or activated leukocytes in the epididymis and the levels of antioxidant enzymes present in the epididymis lumen. (Córdova, 2010, Birben et al., 2012, Mayorga et al., 2013, Santiani, 2013, Williams, 2013, Orozco et al., 2014, Paparella et al., 2015, Leyland, 2017, Yeste et al., 2017). It is important to note that there are mainly two RL that affects the DNA strand, one of which is the OH radical, which results in the formation of 8-OH-guanine and 8-OH-2 deoxyguanosine at a first stage, attacking the purines as pyrimidines, causing fragmentation of double-stranded DNA; while the second is the radical O21, which generally produces only guanine adducts, especially 8-hydroxyguanine, which affects sperm motility (Quintanar and Calderón, 2009, Mayorga et al., 2015, Paparella et al., 2015 ; Yeste et al., 2017). If a sperm with fragmentation of double-stranded DNA manages to fertilize an oocyte, it is incompatible and may affect the normal development of pregnancy (Paparella et al., 2015).

Effect of oxidative stress on female and male fertility: Infertility is defined as the inability of a couple to conceive after a year of sexual intercourse without contraceptive measures (Paparella *et al.*, 2015). There are multiple causes of male infertility, which may be congenital or acquired; Of all of them, idiopathic infertility is caused by multiple factors such as endocrine alterations, oxidative stress, genetic or epigenetic alterations (Palma and Vinay, 2014). In particular, the role of EO as one of the main causes of male infertility has been well established, since ROS can affect all cellular components, including the AGP of membranes, proteins and nucleic acids, causing in males oligozoospermia, prostate carcinoma, cryptorchidism, varicocele, low seminal quality, low motility of spermatozoa, decreased sperm concentration and acceleration in the process of apoptosis of geminous cells (López, 2011; Pérez, 2012; Paparella *et al.*, 2015).

In a study conducted by Pérez (2012), it was observed that in asthenozoospermic patients have an overexpression of the enzyme inducible nitric oxide synthetase (iNOS), compared with the normospérmicos, which results in a sperm dysfunction and in the decrease of the Fecundant capacity of sperm. It has also been shown that sperm in individuals whose partners have recurrent early embryonic death, there is a significant increase in aneuploidies, abnormal chromatin condensation, DNA fragmentation, apoptosis and abnormal sperm morphology (Rodríguez et al., 2011). It is important to highlight the importance of antioxidants in semen, since it has been observed that the low levels or deficiency of antioxidants in the seminal plasma, leaves the sperm unprotected to the EO (Villa et al., 2012). So the use of antioxidants has been proposed as a tool to protect sperm from oxidative damage, it has even been proven that the addition of antioxidants (vitamin C, E or glutathione) at the time of the seminal conservation, produce better results in the seminal evaluation at the time of insemination (Mayorga et al., 2015; Cordova et al., 2017; Thongrueang et al., 2017; Yeste et al., 2017). For the case of the female, it has been suggested that ROS can participate in the formation of adhesions associated with endometriosis, decreasing its fertility. There are also alterations of folliculogenesis caused by ROS, which can deteriorate the quality of the oocyte and have been proposed as a cause of subfertility associated with endometriosis. The EO has also been associated with numerous pathologies among which we can mention: mastitis, edema of the udder, higher incidence of diseases in the peripartum period, deficit in the synthesis of steroid horns in cows, degenerative nutritional myopathy in sheep. In the case of sows, the EO can cause post-weaning inflammatory states, modifying the status of selenium and vitamin E affecting the growth rate of piglets (Castro and Márquez, 2006, Quiles, 2008, Reinoso and Soto, 2009, Gupta et al., 2010).

Conclusion

The effect of EO on sperm cells significantly affects the fecundating capacity of sperm, causing infertility in males and / or low reproductive parameters in females, so that the issue of EO in the fertilizing capacity of spermatozoa mammals, is of utmost importance at present.

REFERENCES

- Álvarez Rodríguez, M., Vicente Carrillo, A., Rodríguez Martínez, H, 2017. Exogenous individual lecthinphospholipids (Phosphatidylchoine and Phosphatidylglycerol) cannot prevent the oxidative stress imposed by criopreservation of boar sperm. J. of Vet. Med. and S. 1(2), 1-11.
- Berzosa Sánchez, 2011. Estudio del daño oxidativo, niveles de defensa antioxidantes y efecto ergogénico de la melatonina en pruebas de esfuerzo físico agudo. Tesis doctoral para optar al grado de doctor europeo. Universidad de Zaragoza. Facultad de medicina. Departamento de farmacología y fisiología, 11-15.

- Birben Esra, Murat Sahiner Umit, Sackesen Cansin, Erzyrum Serpil, Kalayci Omer, 2012. Oxidative Stress and Antioxidant Defense. WAO J, 9-19.
- Castro, C., Márquez, A, 2006. Uso de antioxidantes en animales domésticos. Gaceta de ciencias veterinarias. 12(1), 5-12.
- Córdova Izquierdo Alejando, Iglesias Reyes Adrian Emmanuel, Espinosa Cervantes Román, Guerra Liera Juan Eulogio, Villa Mancera Abel Edmundo, Huerta Crispín Rubén, Juárez Mosqueda María de Lourdes, Méndez Hernández William, Sánchez Aparicio Pedro, Rodríguez Denis Blanca Estela, 2017. Effect of addition of antioxidants in the extender to freeze boar in two types of straws on sperm quality. Int. J. of Rec. Sci. Res. 8(6), 17466-17468.
- Córdova Jiménez Cristian Alejandro, 2010. Control de la peroxidación lipídica del semen refrigerado y criopreservado de verraco mediante antioxidantes (α-Tocoferol/Glutatión reducido) y su repercusión sobre la calidad espermática. Tesis Doctoral. Universidad de León. Facultad de Veterinaria. Departamento de sanidad animal, 1-290.
- Cota Magaña Ana Isabel, 2014. Actividad de las enzimas antioxidantes: superóxido dismutasa, catalasa y glutatión peroxidasa, en el espermatozoide y líquido seminal de conejo nueva Zelanda y su relación con el sobrepeso. Tesis para obtener el grado de Maestra en Biología de la Reproducción Animal. Universidad Autónoma Metropolitana Unidad Iztapalapa, 1-71.
- Domínguez Castanedo Omar, Toledano Olivares Ángel, Ávalos Rodríguez Alejandro, 2015. Efecto del suplemento de astaxantina sobre la calidad seminal en *Moenkhausia sanctaefiloenae* (Teleostei: Characidae). Lat. Am. J. Aquat. Res. 43(1), 215-221.
- Flores C, Márquez Y, Vilanova L, Mendoza C, 2011. Dienos conjugados y malondialdehído como indicadores de lipoperoxidación en semen de toros "Carora". Rev. Vet. 22(2), 91-94.
- Flores Celeste, Vilanova Lourdes, 2015. Metabolismo espermático. Gaceta de Ciencias Veterinarias. 20(1), 23-32.
- García Triana Bárbara E., Saldaña Bernabeu Alberto, Saldaña García Leticia, 2012. El estrés oxidativo y los antioxidantes en la prevención del cáncer. Revista Habanera de Ciencias Médicas 12(2), 187-196.
- Gallardo Bustillos José Oswaldo y Vargas Sandoval César Andrés. 2015. Evaluacion de tres diluyentes para criopreservar semen bovino de toros cruce Sahiwal (Bos Taurus) En el trópico Húmedo. Tesis previa a la obtención del título de Ingeniero Agropecuario. Universidad de las Fuerzas Armadas. Departamento de Ciencias de la Vida y la Agricultura. 1-89.
- Gašparovic Ana Cipak, Lovakovic Tomislava, Zarkovic Neven, 2010. Oxidative stress and antioxidants: Biological response modifiers of oxidative homeostasis in cancer. Per. Biol. 112(4), 433-439.
- Gumbao Baño, D. David, 2015. Efecto antioxidante del glutatión aplicado en el medio de descongelación seminal de tres especies con interés. Universidad de Murcia. Departamento de Fisiología, 1-154.
- Gupta Sajal, Goldberg Jeffrey, M., Aziz Nabil, Goldberg Eric, Krajcir Natalie, Agarwal Ashok, 2010. Mecanismos patogénicos de la infertilidad asociada con endometriosis. Revista Mexicana de Medicina de la Reproducción. 3(2), 83-97.

- Leyland Fraser, 2017. Assessment of ageing-dependent effects on sperm functions following semen cryopreservation. Vet. Med. Open. J. 2(2), 1-2.
- Martínez Sánchez Gregorio, 2005. Especies reactivas de oxígeno y balance redox, parte 1: aspectos básicos y principales especies reactivas de oxígeno. Rev Cub. Farm. 39 (3), 1-11.
- Mayorga Torres José Manuel, Camargo Mauricio, Cadavid Ángela P., Cardona Maya Walter D, 2015. Estrés oxidativo: ¿un estado celular defectuoso para la función espermática?. Rev. Chil. Obstet. Ginecol. 80(6), 486-492.
- Mayorga Torres José Manuel, Peña Beatriz, Cadavid Ángela P., Cardona Maya Walter, 2010. La importancia clínica del ADN espermática en el análisis seminal cotidiano. Rev. Chil. Obstet. Ginecol. 80(3), 256-268.
- Orozco Benítez María Guadalupe, Navarrete Méndez Raúl, Murray Núñez Rafael, Curiel Pulido Edgar, 2014. Efecto de la temperatura en el proceso de criopreservación, sobre la motilidad progresiva del espermatozoide de cerdo. Revista EDUCATECNOCIENCIA. 4(59), 53-64.
- Ortega Ferrusola Cristina, 2011. Factores implicados en la variabilidad individual en la respuesta a la congelación del eyaculado equino: estructura de subpoblaciones, estrés oxidativo y cambios apoptóticos. Tesis doctoral. Universidad de Extremadura. Facultad de veterinaria. Departamento de Medicina Animal, 1-176.
- Palma Cristián, Vinay B. José Ignacio, 2014. Infertilidad masculina. REV. MED. CLIN. CONDES. 25(1), 122-128.
- Paparella Cecilia Vicenta, Pavesi Adriana Beatriz, Feldman Rodolfo Néstor, Bouvet Beatriz Reina, 2015. Importancia de la evaluación del estrés oxidativo en el semen humano. Arch. Med. Interna. 37(1), 7-14.
- Pérez Martínez Silvia, 2012. Óxido nítrico sintetasa y nitración en tirosina en la astenozoospermia: un estudio inmunológico. Revista SAEGRE. 19(3), 57.59.
- Pulgar Eduardo Andrés, 2009. Sistemas transportadores de vitamina C en células espermatogénicas y espermatozoides. Tesis de Grado presentada como parte de los requisitos para optar al grado de Licenciado en bioquímica y al título profesional de bioquímico. Facultad de Ciencias. Universidad Austral de Chile, 1-192.
- Quiles A, 2008. Efecto del selenio en la producción porcina. Mundo Ganadero 8, 42-44.
- Quintanar Escozar Martha Angélica, Calderón Salina José Víctor, 2009. La capacidad antioxidante total. Bases y Aplicaciones. REB. 28(3), 89-101.
- Ramón Martínez María Olga, 2014. Estudio de la actividad aminopeptidásica en espermatozoide astenozoospérmicos. Comparación clínica. Tesis Doctoral. Universidad del País Vasco. Facultad de Medicina y Odontología. Departamento de Fisiología, 1-249.
- Reinoso Valeria, Soto Claudio, 2009. Importancia de la vitamina E y el selenio en vacas lecheras. Artigas, Uruguay. Sitio Argentino de Producción Animal, 1-3. Obtenido de: http://www.produccion-animal.com.ar/ suplementacion_mineral/104-Vit_E_y_Se.pdf
- Restrepo Betancur Giovanni, Pizarro López Edison y Albero Rojano Benjamín. 2012. Estrés oxidativo en el semen equino criopreservado. Revista Lasallista de Investivación 9:1, 128-136.
- Rodríguez Edisson, Gil Villa Aura María, Aguirre Acevedo Daniel Camilo, Cardona Maya Walter, Cadavid Angela P, 2011. Evaluación de parámetros seminales no convencionales en individuos cuyas parejas presentan

muerte embrionaria temprana recurrente: en busca de un valor de referencia. Biomédica. 31, 100-107.

- Sánchez Indhyra, Torres Víctor, Moreno Olga, Rodríguez Antonio, 2011. Determinación del estrés oxidativo mediante peroxidación lipídica en cristalinos humanos con cataratas. Revista de Facultad de Medicina, Universidad de Los Andes. 20(1), 42-45.
- Santiani, A., 2013. Uso de Antioxidantes para mejorar la calidad de semen criopreservado. Spermova. 3(2), 154-157.
- Thongrueang Natcha, Chaibangyang Nutchanat, Chanapiwat Panida, Kaeoket Kampon, 2017. Effects of adding melatonin on the quality of frozen-thawed boar semen. J. of Appl. Anim. Sci. 10(2), 47-56.
- Villa Arcila Néstor Alonso, Ceballos Márquez Alejandro, 2007. Radicales libres e infertilidad en el macho. Vet. Zootec. 1(2), 87-97.
- Villa Néstor A., Castaño Daniel, Duque Paulo C., Ceballos Alejandro, 2012. Glutatione Peroxidase and Superoxide Dismutase activities in blood and seminal plasma in colombian stallions. Rev. Colomb. Cienc. Pecu. 25, 64-70.

- Villa Néstor Alonso, Sánchez Luís Eduardo, Ceballos Alejandro, 2009. Actividad de glutatión peroxidasa y superóxido dismutasa en plasma seminal y sangre en cerdos reproductores. Vet. Zootec. 3(1), 9-51.
- Villalba Martínez Celia, 2014. Implicaciones del estrés oxidativo en la infertilidad masculina: análisis de marcadores bioquímicos en plasma seminal y su asociación con parámetros del seminograma y la capacitación espermática. Mediora presentada por Celia Villalba Martínez para optar al grado de Doctor. Universitat d' Alacant. Departamento de biotecnología, 1-321.
- Williams, S., 2013. Criopreservación de semen porcino: desafíos y perspectivas. Rev. Bras. Reprod. Anim. Belo. Horizonte. 37(2), 207-2012.
- Yeste Marc, Rodríguez Gil Joan E., Bonet Sergi, 2017. Artificial insemination with frozen-thawed boar sperm. Mol. Reprod. Devel. 2017, 1-12.
- Zepeda Andrea B., Farías Jorge B, 2013. Antioxidantes frente a estrés oxidativo inducido por hipoxia hipobária en testículo y epidídimo. Rev. Farmacol. Chil. 6(1), 31-36.
- Zhong Rung Zhen, Zhou Dao Wei, 2013. Oxidative Stress and Role of natural Plant Derived Antioxidants in Animal Reproduction. J. of Integ. Agricult. 12(10), 1826-1838.
