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INTRODUCTION

The modeling of the magnetohydrodynamic natural convection phenomenon (1, 2, 3, 4), the object of this work, contains
differential equations with boundary conditions whose solution can sometimes be obtained analytically(5). However, in most
cases, this is not possible and the only possibility is to compute an approximate function using numerical methods (6). The basic
ideais to look only for the value of unknown functions at a large number o fpoints: this is termed discretization. Indeed, instead of
solving a differential or continuous problem, a large algebraic system called the discrete problem is solved. The discrete problems
derived from physical modeling are characterized by their very large size and their resolution could only be envisaged with recent
advances in computer science (7, 8). To obtain a discrete problem, numerical methods such as the finite difference method (FDM)
(7), the finite element method (FEM)(9, 10), and the finite volumes method (FVM), which are the b asis of many so fiware (7), are
used. In this work, we adopted two of the three methods mentioned above namely the finite difference method and the finite
element method, since they are quick to design, robust and flexible with the existence of a weak solution. The main goal of this
article is to present the method of numerical resolution of the phenomenon of natural magneto hydrodynamic convection in a
porous cavity.

H' height of the cavity

L width ofthe cavity

A aspect ratio ofthe cavity,

ab,c,d, e constants of governing equations

fg hlm, constants of governing discrete equations p, q, s
C, speci fic heat at constant pressure

Da Darcy number
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i max+ 2
J max+2

K]’KZ

Greek letters

TIRN ™R

vectors
8

B
Jl

r

J!

gravitational acceleration

Hartmann number

number of sub-areas in the horizontal direction
number of sub-areas in the vertical direction
thermal conductivity

permmeability tensor

pemmeabilities along the principal axes

ratio ofthe pemmeability

Nusselt number

Rayleigh number

temperature dimensionless

dimensional temperature to the cold wall

dimensional temperature in the hot wall

dimensional wall temperature difference (T =T '1)
Cartesian coordinate axes

pressure

dimension ofa sub-field in the horizontal direction
dimension ofa sub-field in the vertical direction

time

Cartesian coordinates corresponding to the principal axes
dimensional Cartesian coordinates

relative speeds in the directions x' and ', respectively

dimensionless velocities inthe directions Ox and Oy
dimensionless horizontal velocity

vertical speed dimensionless

themmal diffusivity

ratio ofheat capacities

coefficient ofthemmal expansion of the fluid

relative viscosity

electrical conductivity ofthe fluid

orientation angle ofthe main directions of permeability tensor
General dependent value

dynamic viscosity ofthe fluid

apparent dynamic viscosity for the Brinkman model

density ofthe fluid

kinematic viscosity ofthe fluid

the porous medium porosity

heat capacity of the porous medium

heat capacity ofthe fluid

stream function dimensionless

gravitational acceleration
transvers e magnetic field
density ofthe main current

current density

mathematical operators

\%
0

vector Nabla
partial derivative

Indices and superscript

i

J
n
n+1

index ofa given mesh point x
index ofa given mesh point y

on the nth iteration
on the nth + 1 iteration
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on dimensional variables

Others

{ } vector representation

[ ] matrix representation
MATERIALS AND METHODS

The numerical resolution of the natural convection phenomena is used in many works(11, 12) as it is the case in this study.

Numerical discretization methods: The numerical methods of discretization mentioned previously consist in reducing the
resolution ofthe system of di ferential equations in the field o fstudy, with appropriate bound ary conditions, to those of a system
ofalgebraic equations whose solution gives the desired unknowns (6).

Method of Finite Differences (MFD)

The finite di ference method presents a technique for solving partial di fferential equations, by approximating derivatives by finite
differences. This method consists in subdividing the domain ofstudy into a determined number o f nodes and in representing the
function desired in each of the nodes o fthe domain by a development limited in Taylor series. Thus, the differential equation is
trans formed into an algebraic equation for each node. The resolution of the system of algebraic equations makes it possible to
obtain the distribution of the finction studied in the field of study. This method consists in replacing the partial derivatives by
divided diffrences or combinations ofpoint values ofthe function, in a finite number of discrete points or nodes of the mesh.

Consider the Pllowing regular 1D mesh:

with:

dx=Xx —X_ =X, —X

i+ i

We express the partial derivatives, we have the partial derivatives are expressed as a function o f the values at the discretization
points, thus giving:

{82(/)} _ 0 =20+ 0

0%x Ax?
(1
And
% Off-to-the right diagram
{6(”} =127 %1 Off-tothe left diagram @)
Ox | Ax
Piv1 — Pin
2Ax Centered diagram

It may be noted that a priori, there is a choice b etween the three forms o fapproximation of the first derivative. The o fEcenter to
the right diagram is the one that has been chosen to approximate the partial derivatives of order one in this work

Finite Element Method (FEM): This method consists in transforming the di fferential equations into integral forms based on the
concept o f minimization ofa quantity (like heat ...), leading to the exact solution. In other words, it is aimed at finding a gl obal

fin ction representing the mathematical model in the field studied. The findamental principle o fthe finite element method consists
in(9, 10):

Defining a partition ofthe study area, that isto say, subdividing thestudy areainto elementary regions (Finite Elements);
Representing the unknown finction on each ofthese elements by a polynomial approximation;

Building the integral forms;

Minimizing theintegral forms;

Organizing cal culations in matrix form;

Solving the algebraic system obtained.
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FEM is a very powerful method for solving partial differential equations, especially in complex geometries. Its implementation, on
the other hand, is quite complicated and requires a relatively large memory space.

Discretization of the terms of the governing equations

Discretization of the momentum equation

* 2 * 2 * K 2 2
(K sin20+cos20)a—w+((l—K )sin2¢9)a—l//+ K 00520+sin29+ﬂ Oy
Ox? Ox0y vor ) Oy?
__KgBor Koug o'y , o'y | o )
v 0x vor | ox* ox*oyr oyt

In dimensionless form, it becomes:

2 2 2
aal'//eral// +caW=da—T+e

ox? Ox 0y oy? ox

4 4 4
o'y ) o'y N o'y

ox* ox*oy* oy’
“4)

The distribution of all the terms ofthe equation gives:

2 4 4
a{azl//} +b v +c v :d[aT} +e 6!{4/ +2e v +e 841{4/ 5
o, ey, e, lex), |a&'| Tloa] lo'l, ®)

To discretize these different terms, we started from the Taylor expansion with two variables to obtain a linear system, easily
solved by the matrix method:

— _ 1 0 " 0 ¢ n—k k
SO +Ly +m)=f(x; +ldx, y; +maly)_0§n[(n—k)!k!(6xj (6)/) f(x,-,ijldx) (mdy ) ]

This formula allows to define the lines ofthe discretization matrix from the following vector:

VL = (t *Dx, m *Dy, (L * Dx)"2/2, m* W * Dx *Dy, (m* Dy)” 2/2, (L *Dx) "~ 3/6, (1* Dx)*2 ~(m *Dy)/ 2, (I1* Dx) * (m
*Dy) ~ 2/2, (M *Dy) ~ 3/6, (L * Dx) ~ 4/24, (L * Dx)”* 3* (m * Dy)/ 6 (L * Dx) 2 *(m * Dy) " 2/4, (1* Dx) * (m* Dy) " 3/6,
(m * Dy)”~ 4/24,(1 * Dx) ~ 5/120 (1 * Dx)* 4* (m * Dy)/24 (1* Dx)* 3* (m * Dy)~2/12,(1 * Dx) * 2 * (m * Dy)”~ 3/12, (1 *
Dx) * (m Dy *)" 4/24, (m* Dy) " 5/120)

For example, for]l = 0and m = 1, fi, j + 1 and the corresponding line in the discretization matrix is:

VL = (0, Dy, 0, 0, Dy~ 2/2,0,0, 0, Dy ~3/6, 0, 0, 0, 0, Dy~ 4/24, 0, 0, 0, 0, 0, Dy ~5/120)

The procedure is the same for the other values o fl and m.

Thus, the discretized terms are obtained from the system resolution:

AL

B= {f,.'+],j+m _f;',.i}

{ai{ak}=inv(M)*Bwith0SkS n
X

From this resolution, the expressions of each discretized term of the system ofgoveming equations established in this study are
obtained as follows:
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[ 0%y Wit =V ot Vim0 Vi
| Ox0y |, ; 4AxAy

_(321//:| _Vija— 2y +Wija
Lo 1, Ay?

or] _ T, —T,,
| Ox ;. Ax

o'y Vi, —AY OV, = T
ox* i Ax?

'y Vi =2 W W A 2V W 2 T W e a
| Ox?0y? 4Ax2 Ay?

o'y Wi Wi TV =AY Y
ay° y Ay

Grouping of all discretized terms

Afier regrouping all the discretized temms and their arrangement, the first linear equation ofthe system is obtained:

Y, ;T fwi—l,j—l +hy, g 8Yia i TPV +h//i,j—1 —my, ll//i,jH

PV &V ¥ W SV o — Wi, =5(T ;= T )
Where coefficientsf, 4, , m, g s, p,and q are defined by:

=b”‘Ax3 * Ay’ . e*Ax?* Ny?
4 2

4 2

B b*AC *AY?  e* AxP*AY?

h=a*Ax2* Ap* + 4% e* Ap? + e* Ax2 * Ay?
[=c*Ax* *Ay2 +4%e* Ax? +e* Ax2* Ay?
p=e*Ax?

g=e*Ay’

s=d*Ax3 *Ap?

m=Q*a*Ax*Ay*)+ 2% a* Axt F Ay + 6% e* (Ax? + Ayt + 2% Ax2* A2

Q)

O

®)

®

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
(18)

(19)

(20)

(21)
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Discretization of the energy equation

oT or oT  &T  oT

05+ua+v5—aax2+aay2,a=1,a:1 (22)
oT or oT T o’T

o—+u—+v—=« +a ,a=lo=1 73
o ox oy oxr Oy (23)
or " oT or &T 0T

al, "lad, e, Tlae ], a8 24
'y i,j X i XL Lo i,

is given by the method used in the preceding section by:

n+l n+1 n
|:8T:| — I;J _T;,j =0

ot - dt_

i.j

Because the upper and lower walls of the cavity are adiabatic and there is no energy exchange with the

external environment.

_g 3 Ly, -T,;

| Ox ;) Ax (25)
_g LT

| Oy ;i - Ay (26)
[T Ty =27 +T

| Ox? i Ax* (27)
[ o°T _Tiju =2T;; +T; ;-

| o2 y - AY? (28)

A fter discretization and arrangement ofall the terms, a second linear equation is obtained:

(A2~ Aty x U, )XT o+ (A2 = AxAy2 xV, X T, + A2 < T, + ACKT,

" (24x2 +24y2 —~ AxAy>x U, ; —AAyxV; ;) (29)

This equation describes the distribution ofthe temperature function within the cavity which is a function ofthe flow velocities in
both directions.

Discretization of continuity equations: In the same manner, as above, the discretization ofthe continuity equation is given by:

Vij+1 Vi

Vit
Y

Vij Vit
i,j Ax

(30)
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System of discretized governing equations: By putting together the three discretized equations, we obtain the following

discretized equation system is obtained:

U, = Vi Vi
Ay
Vo= Vij— Vi,
L] Ax
GV i+ SV AV =8 — PV Wm0 — DY 0 —8 W (31)

Wiy i+ fWin s — QWi = S(Ti+1,j =T

(A=A U, T+ (A = AXAy SV W, + A XT, + AXT,
" RAr+28y>— AsAY < U, — A=V )

Discretization of the heat transfer rate: The discretization of the equation ofheat trans for rate gives:

(T T,
Nu:A[ ,.1+1Ax 5J _U[,jT;‘,jJ (32)

Schematic resolution of the discretized equations

—»fonction ¥

Block for
approximation by
the finite element | fonction V.

method

~—>fonction U

e
N 1
[ESN —»fonction T
v,
_Th 1/A | ¥a g
v U
Actual sizes— > w ) e
U’ | Blockpra V.
——— POCPCESSE U | pigital resolution —<
v block Ta
—Y | adimensionalsizes |v
v ”
— T,
Block for
digital
integration
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influence of the
parameters Da,
™| HaRaK%

Figure 0-1: Digital resolution diagram

Once the discrete values of the current functions, speeds and temperature are known, the method ofthe finite elements (9, 10) is
used to approximate the said functions by continuous functions in an X and Y plane. For the approximation by the finite element

method, a reference frame made up of9 points has been considered.

el(1,1] @2(1,2 $3 [13)

[for To.03] ca)
242, wapiz.2) ogj123)

050 [0.4,0.5] {0.5,1)
P73, (10) (105 £8(3.2) (1.1 og(3.3)

NB: this diagram gives the nodal values of the function corresponding to the current, to the components of the speed or to the temperature Poly noml basis:

The coordinates ofthe reference points are (0,0); (0, 0.5); (0, 1); (0.5, 0); (0.5, 0.5); (0.5, 1); (1, 0); (1, 0.5); (1,1). Ateach ofthese
reference points are associated nodal values made o fthe values obtained by the discretization ofthe current,speed U, and V speed
features and temperature designated respectively as Si,Ui, Vi, and Ti. The polynomial basis associated with the 9 points is:
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(I, mnm*mm*n,n*nm*m*n*n*mn,m*m*n* n)

Materials: The numerical resolution of the system of discretized governing equations obtained above was performed using the

Matlab software (7).

RESULTS AND DISCUSSION

In this section, we present the numerical results obtained in the case of natural magnetohydrodynamic convection in a porous

cavity.

Influence of the Hartmann number (Ha) on the speeds U and V: The speed o fthe convection phenomenon is expressed along
the vertical and horizontal axes o fthe porous cavity. In the present study, the speed relative to the horizontal axis is called U and
that relative to the vertical axis is designated V.
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By observing the profiles obtained when Ha varies from 1 to 7, a progressive attenuation o fthe convective flow is noted. Indeed,
the order of magnitude of the speeds is divided by 10 when Ha increases. Also, a symmetry of the flow field is observed
concerning the central axis ofthe porous medium; which shows an inversion of the direction of flow each time the latter is in
contact with the limiting horizontal walls of the enclosure. For different values o f the Hartmann Ha number, it is noted that the
velocity ofthe wall-flow is zero; which reflects the condition ofadhesion to the wall relative to the generalized Brinkman model

adopted.

Influence of Hartmann number Ha on the current lines
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The different profiles of current observed show the same trend as those of the speed U in terms of convective

flow.
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Influence of Hartmann number Ha on temperature lines
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Figure 0-14: Temperature lines, Case Ha =3
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Figure 0-15: Temperature lines, Case Ha =7

For Ha = 7: the isotherms are horizontal and almost parallel, it is therefore concluded that under these conditions the mode of
trans for ofheat by conduction is perfectly dominant (pure conduction).

For Ha = 3: isotherms show a slight deviation from the case of pure conduction

For Ha < 1: the isotherms show a significant deviation from the case of pure conduction. It is noted that the temperature
distribution will be slightly variable according to the vertical axis, but variable according to the horizontal axis to satisfy the stable
thermal stratifi cation. It is concluded that under these conditions the mode ofheat trans fer by convection is dominant.

Heat transfer rate: Variations in the rate of heat transfer have been studied. according to several parameters, The results are
presented through a fow curves followed by their analyses.

Heat transfert rate
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Figure 0-16: Ha effect on heat transfer for different Ra values
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Figure 2-16 illustrates the variations in the heat transfer rate in porous media as a function of the Hartmann Ha number for
different values o fthe Rayleigh Ra number when Da = 0.001, K*= [, 8= 0° and 4 = 0.3. This figure shows that the heat transfer
by convection for each value o fthe Rayleigh Ra number decreas es rapidly to reach the pure conduction regime for which Nu = 1
when the Hartmann Ha number increases. The Ra value for which the pure conduction regime is reached depends on the
Hartmann number and thereby on the transverse magnetic field. Also, it is to be noted that the heat transfer by convection
increas es according to the value of the number of Rayleigh Ra when it is in the interval of low numbers of Hartmann Ha (Ha <5).
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Figure 0-17: Ra effect on the heat transfer rates for different values of Ha

The efects o fvaration in the Hartmann Ha number on convective heat transfer as a function ofthe Rayleigh Ra numberin the
porous medium are shown in Figure 2-17. The analysis of the curves reveals that the rate of heat transfer by Nu convection
increases from the pure conduction regime when Ra increases. Thus, for high Hartmann Ha values, heat trans fer by convection is
only possible within the limit o thigh Rayleigh Ra values. For a constant value o f the Rayleigh Ra number, the increase o f the
Hartmann number signifi cantly attenuates convective heat trans fer.
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Figure 0-18: Da effect on the heat transfer rates for different values of 0
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The value of the Darcy Da number to reach the pure conduction regime is independent of 6. For example for Da = 10, pure
conduction is reached.
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Figure 0-19: Ha effect on the heat transfer rate for various values of K*

From the analysis of the curves in Figure 2-19, it appears that the heat transfer by convection for each value of K* decreases
progressively until the pure conduction regime is reached for which Nu = / when Ha increases. The value of K* for which the
pure condu ction regime is reached depends on the Hartmann number, therefore on the transverse magnetic field. For example for
K* =4 when Ha = 2.5, the pure conduction regime is almost reached. It should also be noted that the heat trans fer by convection
increases with the increase in the Hartmann number when the anisotropy ratio in K* pemmeability ofthe porous medium decreases.
Therefore, it llows from this analysis that, when § = 45 °, the heat transfer increases when the permeability of the porous
medium in the horizontal direction is higher compared to that prevailing in the vertical direction (K* </7) and decreases when the
opposite situationis witnessed for which K*> 1.

Conclusion

This study relates to natural magnetohydrodynamic convection in a rectangular cavity isothermally heated by the sides and filled
with an anisotropic porous material. This cavity is subjected to the action o fa transverse magnetic field. From the data collected
and analyzed, the ©llowing conclusions emerge:

. the convective flow is greatly influenced by the anisotropy parameters of permeability for the porous layer and by the
effect ofthe transverse magnetic field applied.

. the rate ofheat trans fer in the porous medium increases when the permeability in the horizontal direction is higher than
that prevailing in the vertical direction

. the increase in the intensity of the transverse magnetic field applied reduces signi ficantly the velocity ofthe flow of the

fluid saturating the porous medium and thereby attenuates the transfer o fheat by convection in the medium.
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