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ARTICLE INFO  ABSTRACT 
 

 
 
 

In this study , hydrodynamic and magnetic anisot ropiesas buoyancy-driven  convection effects  in  a 
two-dimens ional horizontal cavity are investigated analytically . The porous  cavity fil led with  a 
porous medium is heated isothermally by the sides  and its horizontal walls are thermally insulated or 
conducted  gold. The main  directions of permeability are oriented in the direction of that is oblique to 
gravity. Based  on  scale analysis, so lutions  for the flow field, temperature dist ribution, and  Nusselt 
number are obtained . The limiting case corresponding  to pure flu id media, and  pure porous media, 
complete these results in order to validate them when compared to those obtained in the literature. It 
is  found that  temperature and  velocity fields  are modified  signi ficantlywhen applying the transverse 
magnetic field. Also, the effects  of anisotropic parameters on  heat transfer are strongly  signi ficant. 
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INTRODUCTION 
 
The modeling of the magnetohydrodynamic natural convection phenomenon (1, 2, 3, 4), the object of this work, contains 
differential equations with boundary conditions whose solution can sometimes be obtained analytically(5). However, in most 
cases, this is not possible and the only possibility is to compute an approximate function using numerical methods (6). The basic 
idea is to look only for the value of unknown functions at a large number o f points: this is termed discretization.  Indeed, instead of 
solving a differential or continuous problem, a large algebraic system called the discrete p roblem is solved. The discrete problems 
derived from physical modeling are characterized by their very large size and their resolution could only be envisaged with recent 
advances in computer science (7, 8). To obtain a discrete problem, numerical methods such as the finite difference method (FDM) 
(7), the finite element method (FEM)(9, 10), and the finite volumes method (FVM), which are the b asis of many software (7), are 
used. In this work, we adopted two of the three methods mentioned above namely the finite di fference method and the fi nite 
element method, since they are qui ck to design, robust and flexible with the existence of a weak solution.  The main goal of this 
article is to present the method of numerical resolution of the phenomenon of natural magneto hydrodynamic convection in a 
porous cavity.  

 
'H  height of the cavity 

'L  width of the cavity 

A  aspect ratio of the cavity,   

a,b, c, d, e constants of governing equations  
f, g, h, l, m,  constants of governing discrete equations p, q, s 

pC  speci fic heat at constant pressure 

Da  Darcy number 

 
*Corresponding author: AGBOKPANZO Richard Gilles 
Department  of Indust rial  Science and Techniques, Higher Normal School  of Technical Education , Benin 

 

ISSN: 0975-833X 

International Journal of Current Research 
Vol. 12, Issue, 07, pp.12816-12832, July, 2020  

 
DOI: https://doi.org/10.24941/ijcr.38759.07.2020 

 

 

 INTERNATIONAL JOURNAL  
 OF CURRENT RESEARCH  

Article History: 
 

Received 07
th
 April, 2020 

Received in revised form   
25

th
 May , 2020 

Accepted 27
th
 June, 2020 

Published online 30
th
 July, 2020 

 

Citation: LANGANFIN GLELE Victor, AGBOKPANZO Richard Gilles and DEGAN Gérard1. 2020. “Digital resolution of the sy stem of governing 
equa tions of the natural magnetohydrodynamic convec tion phenomenon”, International Journal of Current Research, 12, (07), 12816-12832. 
 

 Available online at http://www.journalcra.com 

Key Words: 
 

Porous Media, Convection,  
Anisotropy , Magnetic Field. 
 



g  gravitational acceleration  

Ha  Hartmann number 

2maxi  number of sub-areas in the horizontal direction 

2maxj  number of sub-areas in the vertical direction 

k  thermal conductivity 

K  permeability tensor  

1K , 2K  permeabilities along the principal axes  

*K  ratio of the permeability 

Nu  Nusselt number 

Ra  Rayleigh number  

T  temperature dimensionless  

1'T  dimensional temperature to the cold wall 

2'T  dimensional temperature in the hot wall 

'T  dimensional wall temperature difference  12 '' TT   

Ox ',  Oy' Cartesian coordinate axes 
'p  pressure  

dx  dimension of a sub-fi eld in the horizontal direction 

dy  dimension of a sub-fi eld in the vertical direction 

t time 

rx ' , ry '  Cartesian coordinates corresponding to the principal axes  

x, y dimensional Cartesian coordinates  

ru ' , rv'  relative speeds in the directions rx ' and ry '  respectively 

u, v dimensionless velocities in the directions Ox and Oy 

U  dimensionless horizontal velocity 

V  vertical speed dimensionless 

Greek letters 
  thermal diffusivity  
  ratio of heat capacities  

  coeffi cient of thermal expansion of the fluid  

  relative viscosity  

  electrical conductivity of the fluid  

  orientation angle of the main directions of permeability tensor  
  General dependent value  
  dynamic viscosity of the fluid  

eff  apparent dynamic viscosity for the Brinkman model 

  density of the fluid  
v  kinematic viscosity of the fluid  
 the porous medium porosity  

 
mpr C  heat capacity of the porous medium  

 
fpr C  heat capacity of the fluid 

  stream function dimensionless  
vectors  
g  gravitational acceleration  

B  transverse magnetic field  

rJ '  density of the main current  

'J  current density  

mathematical operators  

  vector Nabla 

  partial derivative 

Indices and superscript 
i  index of a given mesh point x 

j  index of a given mesh point y 

n  on the nth iteration  

1n  on the nth + 1 iteration  
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' on dimensional variables  
Others 

  vector representation  

   matrix representation  

 
MATERIALS AND METHODS 
 
The numerical resolution of the natural convection phenomena is used in many works(11, 12) as it is the case in this study. 

 
Numerical discretization methods: The numerical methods of discretization mentioned previously consist in reducing the 
resolution of the system of di fferential equations in the field o f study, with appropriate boundary conditions, to those of a system 
of algebraic equations whose solution gives the desired unknowns (6). 
 
Method of  Finite Differences (MFD) 
 
The finite di fference method presents a technique for solving partial di fferential equations, by approximating derivatives by finite 
differences. This method consists in subdividing the domain of study into a determined numb er o f nodes and in representing the 
function desired in each of the nod es o f the domain by a development limited in Taylor series. Thus, the differential equatio n is 
transformed into an algebraic equation for each node. The resolution of the system of algebraic equations makes it possible to 
obtain the distribution of the function studied in the field of study. This method consists in replacing the partial derivatives by 
divided differences or combinations of point values of the function, in a finite number of discrete points or nodes of the mesh. 

 
Consider the following regular 1D mesh: 
 
with: 
 

iiii xxxxdx   11  
 
We express the partial derivatives, we have the partial  derivatives are expressed as a function o f the values at the  discretization 
points, thus giving: 
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It may be noted that a priori, there is a choice b etween the three forms o f approximation of the first derivative. The off-center to 
the right diagram is the one that has been chosen to approximate the partial derivatives of order one in this work  

 
Finite Element Method (FEM): This method consists in transforming the di fferential equations into integral forms based on  the 
concept o f minimization of a  quantity (like heat .. .), leading to the exact solution. In other words, it is aimed at finding a gl obal 
function representing the mathematical model in the field studied. The fundamental principle o f the finite element method consists 
in(9, 10): 
 
 Defining a partition of the study area, that is to say, subdividing the study area into elementary regions (Finite Elements); 

 Representing the unknown function on each of these elements by a polynomial approximation; 
 Building the integral forms; 
 Minimizing the integral forms;  
 Organizing cal culations in matrix form; 
 Solving the algebraic system obtained. 
 

Off-to-the right diagram 

Centered diagram 
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FEM is a very powerful method for solving partial differential equations, especially in complex geometries. Its implementation, on 
the other hand, is quite complicated and requires a relatively large memory space. 

 
Discretization of the terms of the governing equations 
 
Discretization of the momentum equation 
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In dimensionless form, it becomes: 
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The distribution of all the terms of the equation gives: 
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To discretize these di fferent terms, we started from the Taylor expansion with two variables to obtain a linear system, easily 
solved by the matrix method: 
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This formula allows to define the lines of the discretization matrix from the following vector:  
 
VL = (t * Dx, m * Dy, (L * Dx) ^ 2/2, m * W * Dx * Dy, (m * Dy) ̂  2/2, (L * Dx) ^ 3/6, ( l * Dx) * 2  ̂(m * Dy) / 2, (l * Dx) * (m 
* Dy) ^ 2/2, (M * Dy) ^ 3/6, (L * Dx) ^ 4/24, (L * Dx) ̂  3 * (m * Dy) / 6 (L * Dx) ^ 2 * (m * Dy) ̂  2/4, (l * Dx) * (m * Dy) ^ 3/6, 
(m * Dy) ^ 4/24, (l * Dx) ^ 5/120 (l * Dx) ^ 4 * (m * Dy) / 24 (l * Dx) ^ 3 * (m * Dy) ^ 2/12, (l * Dx) ^ 2 * (m * Dy) ^ 3/12, (l * 
Dx) * (m Dy *) ̂  4/24, (m * Dy) ^ 5/120) 
 
For example, for l = 0 and m = 1, fi, j + 1 and the corresponding line in the discretization matrix is: 
 
VL = (0, Dy, 0, 0, Dy ^ 2/2, 0, 0, 0, Dy  ̂3/6, 0, 0, 0, 0, Dy ̂  4/24, 0, 0, 0, 0 , 0, Dy  ̂5/120) 
 
The procedure is the same for the other values o f l and m. 
 
Thus, the discretized terms are obtained from the system resolution:  
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From this resolution,  the expressions of each discretized term of the system of gov erning equations established in  this study are 
obtained as follows:  
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Grouping of all discreti zed terms  
 
After regrouping all the discretized terms and their arrangement, the first linear equation of the system is obtained: 
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Where coeffi cientsf, h,  l, m, g, s, p, and q are defined by: 
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Discretization of the energy equation 
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Because the upper and lower walls of the cavity  are adiabatic and there is no energy exchange with the 

external environment. 
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After discretization and arrangement of all the terms, a second linear equation is obtained: 
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This equation describes the distribution of the temperature function within the cavity which is a function of the flow v elocities in 
both directions. 
 
Discretization of continuity equations: In the same manner, as above, the discretization of the continuity equation is given by: 
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System of discretized governing equations:  By putting together the three discretized equations, we obtain the following 
discretized equation system is obtained:  
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Discretization of the heat transfer rate: The discretization of the equation of heat transfer rate gives:  
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Schematic resolution of the discretized equations 
 

 
 

Figure 0-1: Digi tal  resolution diagram 
 

Once the dis crete values of the current functions, speeds and temperature are known, the method of the finite elements (9, 10) is 
used to approximate the said functions by continuous functions in an X and Y plane. For the approximation by the finite element 
method, a reference frame made up of 9 points has been considered. 

 

 
NB: this diagram  gives the nodal values of the function corresponding to the current, to the components of the speed or to the temperature Polynomial basis: 

 
 

The coordinates of the reference points are (0,0); (0, 0.5); (0, 1); (0.5, 0); (0.5, 0.5); (0.5,  1); (1, 0); (1, 0.5); (1, 1). At each of these 
reference points are associated nodal values made o f the values obtained by the discretization of the current,speed U, and V speed 
features and temperature designated respectively as Si,Ui, Vi, and Ti. The polynomial basis associated with the 9 points is:  

12822                                   International Journal of Current Research, Vol. 12, Issue, 07, pp.12816-12832, July, 2020  



(1, m, n, m * m, m * n, n * n, m * m * n * n * m n, m * m * n * n)   
 
 

Materials: The numerical resolution of the system of discretized governing equations obtained above was performed using the 
Matlab software (7).  
 
RESULTS AND DISCUSSION  
 
In this section,  we present the numerical results obtained in the case of natural magnetohydrodynamic convection in a porous 
cavity.  

 
Influence of the Hartmann number (Ha) on the speeds U and V: The speed o f the convection phenomenon is expressed along 
the vertical and ho rizontal axes o f the porous cavity.  In the present study, the speed relative to the horizontal axis is called U and 
that relative to the vertical axis is designated V. 

 
Case Ha = 1 

 

 
Figure 0-1: Speed U, Case Ha = 1 

 

 
Figure 0-2: Speed V, Case Ha = 1 
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Case Ha = 2 
 

 
Figure 0-3: Speed U, Case Ha = 2 

 
Figure 0-4: Speed V, Case Ha = 2 

 
Case Ha = 3  

 
Figure 0-5: Speed U, Ha = Case 3 
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Figure 0-6: Speed V, Case Ha = 3 

Case Ha = 4  

 
Figure 0-7: Speed U, Case Ha = 7 

 

 
Figure 0-8: Speed V, Case Ha = 7 
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By observing the profiles obtained when Ha varies from 1 to 7, a progressive attenuation o f the convective flow is noted. Indeed, 
the order of magnitude of the speeds is  divided by 10 when Ha increases. Also, a symmetry of the flow field is observed 
concerning the central axis of the porous medium; which shows an inversion of the direction of flow each time the latter is in 
contact with the limiting horizontal walls of the enclosure. For di fferent values o f the Hartmann Ha number, it is noted that  the 
velocity of the wall-flow is zero; which reflects the condition of adhesion to the wall relative to the generalized Brinkman model 
adopted. 

 
Influence of Hartmann number Ha on the current lines 

 
Case Ha = 1  

 
 

Figure 0-9: Streamlines, Case Ha = 1 

Case Ha = 2 
 

 
Figure 0-10: Streamlines , Case Ha = 2 

Case Ha = 3  
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Figure 0-11: Streamlines , Case Ha = 3 

 
Case Ha = 7  

 
 

Figure 0-12: Streamlines , Case Ha = 7 

 

The different profiles of current observed show the same trend as those of the speed U in terms of convective 

flow.  
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Influence of Hartmann number Ha on temperature lines 
 

 
 

Figure 0-13: Temperature lines, Case Ha = 1 
 
 

 
 

Figure 0-14: Temperature lines, Case Ha = 3 
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Figure 0-15: Temperature lines, Case Ha = 7 
 
For �� ≥  7: the isotherms are horizontal and almost parallel, it is therefore concluded that under these conditions the mode of 
transfer of heat by conduction is perfectly dominant (pure conduction). 
 
For �� =  3: isotherms show a slight deviation from the case of pure conduction 
 
For �� ≤  1: the isotherms show a significant deviation from the case of pure conduction.  It is noted that the temperature 
distribution will be slightly variable according to the vertical axis, but variable according to the horizontal axis to satisfy the stable 
thermal stratifi cation.  It is concluded that under these conditions the mode of heat transfer by convection is dominant. 
 
Heat transfer rate: Variations in the rate of heat transfer have been studied. according to several parameters, The results are 
presented through a few curves followed by their analyses. 

 
Figure 0-16: Ha effect on heat transfer for different Ra values 
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Figure 2-16 illustrates the variations in the heat transfer rat e in porous media as a function of the Hartmann Ha number for 
different values o f the Rayleigh Ra number when Da = 0.001, K* = 1, θ = 0° and A = 0.3. T his figure shows that the heat transfer 
by convection for each value o f the Rayleigh Ra number decreases rapidly to reach the pure conduction regime for which Nu = 1 
when the Hartmann Ha number increases. The Ra value for which the pure conduction regime is reached depends on the 
Hartmann number and thereby on the transverse magnetic  field. Also, it is to be noted that  the heat transfer by convection 
increases according to the value of the number of Rayleigh Ra when it is in the interval of low numbers of Hartmann Ha (Ha <5). 
 

 
Figure 0-17: Ra effect on the heat transfer rates for different values of Ha 

 
The effects o f v ariation in the Hartmann Ha number on convective h eat transfer as a function of the Rayleigh Ra number in  the 
porous medium are shown in Figure 2-17. The analysis of the curves reveals that the rate of heat transfer by Nu convection 
increases from the pure conduction regime when Ra increases. Thus, for high Hartmann Ha values, heat transfer by convectio n is 
only possible within the limit o f high Rayleigh Ra  values. For a constant value o f the Rayleigh Ra number, the increase o f the 
Hartmann number signifi cantly attenuates convective heat transfer.  

 
Figure 0-18: Da effect on the heat transfer rates for different values of θ 
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The value of the Darcy Da number to reach the pure conduction regime is independent of θ. For example for Da ≈ 10, pure 
conduction is reached.  
 

 
 

Figure 0-19: Ha effect on the heat transfer rate for various values of K* 
 
From the analysis of the curves in Figure 2-19, it appears that the heat transfer by convection for each value of K* decreases 
progressively until the pure conduction regime is reached for which Nu = 1  when Ha increases. The value of K* for which the 
pure conduction regime is reached depends on the Hartmann number, therefore on the tr ansverse magnetic fi eld. For example for 
K* = 4 when Ha = 2.5, the pure conduction regime is almost reached. It should also be noted that the heat transfer by convection 
increases with the increase in the Hartmann number when the anisotropy ratio in K* permeability of the porous medium decreases. 
Therefore, it follows from this analysis that, when θ = 45 °, the heat transfer increases when the permeability of the porous 
medium in the horizontal direction is higher compared to that prevailing in the vertical direction (K* <1) and decreases when the 
opposite situation is witnessed for which K*> 1. 
 
Conclusion 
 
This study relates to natural magnetohydrodynamic convection in a rectangular cavity isothermally heated by  the sides and fi lled 
with an anisotropic porous material. This cavity is subjected to the action o f a transverse magnetic field. From the data collected 
and analyzed, the following conclusions emerge: 
 
 the convective flow is greatly influenced by the anisotropy parameters of permeability for the porous layer and by the 

effect of the transverse magnetic fi eld applied. 

  the rate o f h eat transfer in the porous medium increases when the permeability in the horizontal direction is higher than 
that prevailing in the vertical direction 

 the increase in the intensity of the transverse magnetic field applied reduces signi ficantly the velocity of the flow o f the 
fluid saturating the porous medium and thereby attenuates the transfer o f heat by convection in the medium. 
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