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INTRODUCTION 
 

The notion of �-algberas, another generalization of class of 
algebras, were introduced Neggers and Kim [
They studied some properties of this class of algebras. The 
study of multipliers has been made by various researchers in 
the context of rings and groups. They have studied the 
properties of multipliers. But the properties of multipliers on 
bipolar-valued fuzzy �-algebra an important class of fuzzy 
algebras containing the class ���-algebras. So with this 
motivation in this paper I introduce the concept of a multipliers 
on a bipolar-valued fuzzy �-algebras and discuss some results 
of multipliers on bipolar-valued fuzzy �-algebras.
 

Preliminaries: In this section we describe some definitions 
and notions that will be used in the sequel. 
 

Definition 2.1 [Akram, 2005] Let � be a set with binary 
operation ∗ and a constant 0. Then (�.∗ ,0)
algebra if it satisfies the following axioms 
 

1) �(� ∗ �) ∗ (� ∗ �)� ∗ (� ∗ �) = 0 

2) �� ∗ (� ∗ �)� ∗ � = 0 

3) � ∗ � = 0 
4) 0 ∗ � = 0 
5) � ∗ � = 0 and � ∗ � = 0 imply � = � for all 
 

Definition 2.2 [Joseph Neggers, 1999] A �
empty set � with a constant 0 and a binary operation 
satisfying the following axioms 
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algberas, another generalization of class of 
Neggers and Kim [Imai, 1966]. 

They studied some properties of this class of algebras. The 
study of multipliers has been made by various researchers in 
the context of rings and groups. They have studied the 
properties of multipliers. But the properties of multipliers on 

algebra an important class of fuzzy �-
algebras. So with this 

motivation in this paper I introduce the concept of a multipliers 
algebras and discuss some results 

algebras. 

In this section we describe some definitions 

be a set with binary 
) is called a ���-

for all �, �, � ∈ �. 

�-algebra is a non-
and a binary operation ∗ 
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1)� ∗ � = 0 
2)0 ∗ � = 0 
3)� ∗ � = 0 and � ∗ � = 0 imply 
 
Example 2.3 [8] Let � = {0,1
table 
 

 
Then (�,∗ ,0) is a �-algebra. 
 
Remark 2.4 It is obvious from above definitions that every 
���-algebra is a �-algebra. The following shows that 
converse is not true, in general.
 
Example 2.5 [9] Let � = {0,1,
defined by  
 

 
Then � is a �-algebra, but it is not 
condition (2) of definition (2.1) is not satisfied as shown 
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imply � = � for all �, � ∈ �. 

{ 1,2} be a set with the following 

 

It is obvious from above definitions that every 
algebra. The following shows that 

is not true, in general.  
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algebra, but it is not ���-algebra this is because 
condition (2) of definition (2.1) is not satisfied as shown  

 

 INTERNATIONAL JOURNAL  
 OF CURRENT RESEARCH  

International Journal of Current Research, 12, (06), 11873-11875. 

algebra, Commutative and Positive Implicative on Bipolar-Valued fuzzy �-



  �3 ∗ (3 ∗ 2)� ∗ 2 = (3 ∗ 1) ∗ 2 = 3 ∗ 2 = 1 ≠ 0 
 
Definition 2.6 Let � be a non-empty subset of a �-algebra �, 
then � is called a subalgebra of � if � ∗ � ∈ �∀�, � ∈
�. Definition 2.7 Let � be a �-algebra and � a subset of �, then 
� is called an ideal of � if it satisfies the following conditions 
 
1) 0 ∈ � 
2) � ∗ � ∈ � and � ∈ � imply � ∈ �. 
 
Definition 2.8 Let � be a �-algebra and � a nonempty subset 
of �, then � is called a �-ideal of � if it satisfies the following 
conditions 
 
1)� ∗ � ∈ � and � ∈ � imply � ∈ �  
2)� ∈ � and � ∈ � imply � ∗ � ∈ � 
3)0 ∈ �. 
 
Example 2.9 Let � = {0, �, �, �, �} be a �-algebra with the 
following cayley table  
 

 
Let � = {0, �, �} be a subset of �, then � is a �-ideal of �. 
 
Main Results 
 
Definition 3.1 Let � be a �-algebra and let (��, ��) be a 
bipolar-valued fuzzy sets on �. A self map ��: � → � and 
��: � → � satisfying the condition ��(� ∗ �) = ��(�) ∗
�, ��(� ∗ �) = � ∗ ��(�), for all �, � ∈ �, is called a 
multipliers on bipolar valued fuzzy �-algebra on �. 
 
Example 3.2 Let � = {0, �, �} with the binary operation ∗ 
defined by  

 

Then � is a �-algebra. Let ��: � → � and ��: � → � be 
defined by  
 

 ��(�) = �
0 �� � = 0, �
�  �� � = �

�   

��(�) = �
0 �� � = 0, −�
−� �� � = −�

�  Then (��, ��) is a multipliers on 

bipolar-valued fuzzy �-algebra on �. 
 
Proposition 3.3 Let � be a �-algebra and (��, ��) is a 
multipliers on bipolar-valued fuzzy �-algebra on �, then 

1) ��(0) = 0, ��(0) = 0. 
2) ��(�) ≤ �, ��(�) ≥ �∀� ∈ �. 
3) If � ≤ � then ��(�) ≤ �∀�, � ∈ � and ��(�) ≥ �. 
 
Proof: Let � be a �-algebra and let (��, ��) multipliers on 
bipolar-valued fuzzy �-algebra on �, then we have ��(� ∗
�) = ��(�) ∗ � and ��(� ∗ �) = � ∗ ��(�) To prove, (1) 

Let� = 0, � = 0,��(� ∗ �) = ��(0 ∗ 0) = ��(0) ∗ 0 = 0 ∗
0 = 0. Therefore ��(0) = 0 and ��(� ∗ �) = � ∗ ��(�) ⇒
��(0 ∗ 0) = 0 ∗ ��(0) = 0 ∗ 0 = 0.  
 
Therefore ��(0) = 0. Hence prove the (1)  
 
To prove (2) Let � ∈ �, then by (1) we have 0 = ��(0) =
��(� ∗ �) = ��(�) ∗ � so ��(�) ≤ �. Also ��(0) = 0 ⇒
��(� ∗ �) = 0 = � ∗ ��(�) ⇒ � ≤ ��(�) so ��(�) ≥ �. 
hence prove (2).  
 
To prove (3) Let �, � ∈ �, � ≤ �. Then � ∗ � = 0 by (1) we 
have 0 = ��(0) = ��(� ∗ �) = ��(�) ∗ �. Thus ��(�) ≤ �. 
and we also have by (1) 0 = ��(0) = ��(� ∗ �) = � ∗ ��(�). 
Thus � ≤ ��(�) ⇒ ��(�) ≥ �. Hence proves the (3). 
 
Proposition 3.4 Let (��, ��) and (��, ��) be a multipliers on 
bipolar-valued fuzzy �-algebra on �. Then their composition 
(�� ∘ ��), (�� ∘ ��) is a multipliers on bipolar-valued fuzzy 
�-algebra on �. Proof: Let � be a �-algebra, let 
(��, ��), (��, ��) be multipliers on bipolar-valued fuzzy �-
algebra on �. Let �, � ∈ �. Then  
 

 (�� ∘ ��)(� ∗ �) = �����(� ∗ �)� 

                              = ��(��(�) ∗ �)) 

                              = �����(�)� ∗ � 

                              = (�� ∘ ��)(�) ∗ � 
 
Similarly, we can prove that  
 
(�� ∘ ��)(� ∗ �) = � ∗ (�� ∘ ��)(�). 
 
Definition 3.5 A �-algebra � is said to be positive implicative 
if (� ∗ �) ∗ � = (� ∗ �) ∗ (� ∗ �). for all �, �, � ∈ �. 
 
Definition 3.6 Let �(�) denotes the collection of all 
multipliers on �. Obviously �: � → � defined by �(�) = 0 for 
all � ∈ �and �: � → � defined by �(�) = � for all � ∈ � are in 
�(�). So �(�) is nonempty. 
 
Definition 3.7 Let � be a positive implicative �-algebra and 
�(�) be the collection of all multipliers on � we define a 
binary operation ∗ on �(�) by  
 
 (�� ∗ ��)(�) = ��(�) ∗ ��(�), For all � ∈ � and ��, �� ∈
�(�). 
 
 (�� ∗ ��)(�) = ��(�) ∗ ��(�), For all � ∈ � and ��, �� ∈
�(�). 
 
Theorem 3.6 Let � be a positive implicative on �-algebra. 
Then (�(�),∗ ,0) is a positive implicative bipolar-valued 
fuzzy �-algebra. 
 
Proposition 3.7 Let � be a �-algebra and (��, ��) a 
multipliers on �. If (��, ��) is one-to-one. Then (��, ��) is 
the identity map on �. 
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Proof: Let �� be one-to-one. Let � ∈ � then ���� ∗ ��(�)� =

��(�) ∗ ��(�) = 0 = ��(0). Thus � ∗ ��(�) = 0 ⇒ � ≤
��(�). Since ��(�) ≤ �, by proposition 3.3(2) for all �, 
therefore ��(�) = �. hence �� is the identity map.  
 

Similarly, let �� be one-to-one let � ∈ �. Then ���� ∗

��(�)� = ��(�) ∗ ��(�) = 0 = ��(0). Thus � ∗ ��(�) =

0 ⇒ � ≥ ��(�). Since ��(�) ≥ �,  by proposition 3.3(2) for 
all �, therefore ��(�) = �. Hence �� is the identity map. 
Definition 3.8 Let (��, ��) be a multipliers on �. We define 
���(��) by ker(��) = {�: � ∈ � ��� ��(�) = 0}, and 
ker(��) = {�: � ∈ � ��� ��(�) = 0}  
 
Proposition 3.9 Let � be a �-algebra and (��, ��) be a 
bipolar-valued fuzzy �-algebra is a multipliers on �. Then (1) 
Ker (��) and Ker (��) is a sub algebra of � and (2) If 
(��, ��) is one-to-one then Ker(��) =ker(��) = {0}. 
 
Proof: (1) Let �, � ∈ ker(��). Then ��(�) = 0 and ��(�) =
0 so ��(� ∗ �) = ��(�) ∗ � = 0 ∗ � = 0. Then � ∗ � ∈
ker (��) which implies ker (��) is sub algebra of �. ��(�) =
0, ��(�) = 0 so ��(� ∗ �) = � ∗ ��(�) = � ∗ 0 = 0. Thus 
� ∗ � ∈ ker (��) which implies that ker (��) is a sub algebra 
of �. 
(2) Let � be one-to-one. Let � ∈ ker(��). so ��(�) = 0 =
��(0). Thus � = 0. so ker(��) = {0}. Also we can prove 
ker(��) = {0}. 
 
Definition 3.10 A �-algebra � is called commutative if 
� ∗ (� ∗ �) = � ∗ (� ∗ �) for all �, � ∈ �. 
 
Proposition 3.11 Let � be a commutative �-algebra satisfying 
� = 0 = �, � ∈ �. Let bipolar-valued fuzzy �-algebra (��, ��) 
be a multipliers on �. If � ∈ ker(��), if � ≤ �, then � ∈
ker(��) and if � ∈ ker(��) , � ≥ �, then � ∈ ker(��). 
 
Proof: Let � ∈ ker (��) and � ≤ �. Then ��(�) = 0 and 

� ∗ � = 0. Now  ��(�) = ��(� ∗ 0) = ���� ∗ (� ∗ �)� =

���� ∗ (� ∗ �)� = ��(�) ∗ (� ∗ �) = 0 ∗ (� ∗ �) = 0. So 

� ∈ ker(��).    
 
 Also, Let � ∈ ker(��) , � ≥ �. Then ��(�) = 0, � ∗ � =

0. Now ��(�) = ��(� ∗ 0) = ���� ∗ (� ∗ �)� =

���� ∗ (� ∗ �)� = ��(�) ∗ (� ∗ �) = 0 ∗ (� ∗ �) = 0. So 

� ∈ ker(��). 
 
Theorem 3.12 Let � be a �-algebra satisfying � = 0 = � for 
all � ∈ �. Let bipolar-valued �-algebra (��, ��) be a 
multipliers on �, which is also an endomorphism on �. Then 
Ker(��) and Ker(��) is a �-ideal of �. 
 
Proof: Let � ∗ � ∈ ker(��) , � ∈ ker(��). Then ��(�) = 0. 
Also ��(� ∗ �) = 0, which implies that 0 = ��(�) ∗ ��(�) =
��(�) ∗ 0 = ��(�). Thus � ∈ ker(��). Let � ∈ ker (��) ad 
� ∈ �. Then  
 

��(� ∗ �) = ��(�) ∗ � = 0 ∗ � = 0. 
 
So � ∗ � ∈ ker(��). Hence Ker(��) is a �-ideal of �. 
 
 
 
 

Similarly, Let � ∗ � ∈ ker(��) , � ∈ ker(��). Then ��(�) = 0 
and ��(� ∗ �) = 0, which implies that 0 = ��(�) ∗ ��(�) =
��(�) ∗ 0 = ��(�). Thus � ∈ ker(��). Let � ∈ ker (��) and 
� ∈ X.Then ��(� ∗ �) = � ∗ ��(�) = � ∗ 0 = 0. So � ∗ � ∈
ker(��). Hence Ker(��) is a �-ideal of �. 
 
Definition 3.13 Let � be a �-algebra and bipolar-valued fuzzy 
�-algebra (��, ��) is a multipliers on �. Then the set 
 
Fix(��) = {�: � ∈ � ��� ��(�) = �}. 
Fix(��) = {�: � ∈ � ��� ��(�) = �}. is called the set of 
fixed points of (��, ��). 
 
Proposition 3.14 Let � be a �-algebra and bipolar-valued �-
algebra (��, ��) a multipliers on �. Then Fix(��) and 
Fix(��) is a sub algebras of �. 
 
Proof: Since ��(0) = 0, ��(0) = 0, so Fix(��) and Fix(��) 
is non-empty. Let �, � ∈ ���(��). Then ��(�) = �, ��(�) =
�. Thus ��(� ∗ �) = ��(�) ∗ � = � ∗ �. So � ∗ � ∈ ���(��). 
Hence Fix(��) is a Sub algebra of �. Also Let �, � ∈ ���(��). 
Then ��(�) = �, ��(�) = �. Thus ��(� ∗ �) = � ∗ ��(�) =
� ∗ �. So � ∗ � ∈ ���(��). Hence Fix(��) is a sub algebra of 
�. 
 
Conclusion 
 
We have initiated a study of multipliers on bipolar-valued 
fuzzy �-algebras. I have shown that the collection M(X) of 
multipliers on a bipolar-valued fuzzy �-algebra. We have also 
investigate the conditions under which Ker(��) and Ker(��) 
of a multipliers (��, ��) ∈ �(�) is an ideal. 
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