

Available online at http://www.journalcra.com

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

International Journal of Current Research Vol. 12, Issue, 11, pp.14701-14704, November, 2020

DOI: https://doi.org/10.24941/ijcr.40083.11.2020

RESEARCH ARTICLE

FRUCTOSE INDUCED VARIATIONS IN PUPATION HEIGHT IN BIPECTINATA SPECIES COMPLEX OF GENUS- DROSOPHILA

*Arun Kumar and Ajai Kumar

Molecular Biology Laboratory Department of Zoology, Feroze Gandhi College Reabareli, 229001, India

ARTICLE INFO	ABSTRACT		
Article History: Received 10 th August, 2020 Received in revised form 17 th September, 2020 Accepted 30 th October, 2020 Published online 30 th November, 2020 Key Words: Drosophila, fructose, Pupation height. Selection, Ecogenetics.	To study the pupation site preference which is an important larval behavior, pupation height was scored in Drosophila malarkotliana, D.bipectinata and D. parabipectinata using fructose sugar in culture media. Strains of these species were collected from Unchahar, Bachhrawan, Raebareli & Salon localities in Raebareli Districts. The mean pupation height in different strains of Drosophila malarkotliana ranged from 3.56 to 3.67, in D. bipectinata ranged from 4.58 to 5.02 and D.parabipectinata, ranged from 1.96 to 2.03. The analysis of variance and t-test were		
	performed to test intra and interspecies in pupation height. These tests revealed significant variation among different strains of the species. Significant variations among male & female for pupation height the same species were also found in all species Drosophila. These observations provide evidence for ecogenetics variations in pupation height of three species of Drosophila. Variations among different strains of the same species in pupation height are attributable to genetic heterogeneity among the strains.		

Copyright © 2020, Arun Kumar and Ajai Kumar. This is an op access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Arun Kumar and Ajai Kumar. 2020. "Fructose induced variations in pupation height in bipectinata species complex of genus- drosophila", International Journal of Current Research, 12, (11), 14701-14704.

INTRODUCTION

Research in field of behavior genetics largely began as a byproduct of other investigations in a number of organisms including Drosophila. Out of four life stages of Drosophila two stages exhibit behavior-larva and adult. Although sexual and nonsexual behavior of adult has been extensively studied (Grossfield, J., 1978; Chatterjee and Singh., 1989, Spieth and Ringo., 1983; Gupta and Kumar., 2017; Gupta et al., 2018; Ramniwas and Kumar., 2019) the behavior of larvae has been largely ignored until recently. In view of the fact that the total fitness is heavily influenced at the larval stage, behavior genetic study of Drosophila larvae has been initiated recently. The pupation site preference is an important step in Drosophila preadult development because the place selected by larvae can have a decisive influence on their subsequent survival (Sameoto and Miller 1968). Thus pupation site preference is interesting and important primarily because it affects the survival of pupae. In Drosophila, the choice of a suitable pupation site directly influences the successful emergency of the adult (Sokolowlski, 1985; Rodriguez et al., 1992). Previous studies show that differences in pupation height, a continuous measure of pupation site preferences, are influenced by the

*Corresponding author: Arun Kumar,

Molecular Biology Laboratory Department of Zoology, Feroze Gandhi College Reabareli, 229001, India

abiotic factors moisture, lighting condition, and temperature and by the biotic factors density, sex developmental time, and species measured (for reviews, see Sokolowski, 1985; Sokolowski et al., 1986; Vandal et al., 2010; Nakul et al., 2008; Deniz and David 2013; Narasimaha et al., 2015), Pupation site choice by Drosophila larvae could provide a basis for larval habital choice and niche separation between species. Schnebel and Grossfield (1986) have done the only systematic study of interspeciefic variability in pupation behavior in Drosophilla. They found significant differences between the two most closely related species in four species triads, each triads, and each triad coming from a different ecosystem ranging from desert to tropical rain forest. Earlier, Markow (1979) observed that D. melanogaster pupated higher than its sibling, D. simulans, and that D. pseudoobscura, a more distantly related species, pupated higher that D. simulans but lower than D. melanogaster. This, and Schnebel and Grossfield's (1986) findings, strongly suggests the presence of niche separation among closely related Drosophila larvae. The phylogenetic relationship among the members of the D. melanogaster subgroup has recently been considered in detail using genetic information from all available sources (Lachaise et al., 1988; Singh, 1989). The present study is a systematic study of intersexual, intraspecific, and interspecific variability in pupation behavior and developmental time in the Drosophila bipectinata species complex of genus Drosophila.

Three species of Drosophila viz, *Drosophila malarkotliana*, *D. bipectinata* and *D. parabiectinata* were used for present study using fructose sugar in culture media. Three species viz. *D. malerkotilana*, *D.bipectinata* and *D. parabipectinata* were used for strains of using fructose sugar in culture media.

MATERIALS AND METHODS

The handling and test procedures for measuring pupation height are described in detail by Bauer and Sokolowski (1985) and Pandey and Singh (1993).A large number of stocks of D. malerkotliana, D. bipectinata and D. parabipectinata maintained in our laboratory were employed during the course of the present study. In D. malerkotliana, three types of strains were used. (i) mass culture wild stocks (23) which were established from several naturally impregnated females collected from different localities in India, (ii) mutant stocks (7) and (iii) wild stocks which were made karyotypically homozygous for ST or inverted arrangements in different gene chromosomes and thus they are free of inversion heterozygosity. In *D.bipectinata*, 5 mass culture stocks of different geographic origin were utilized. Seven mass culture stocks of different geographic origin were used D.malerkotliana.

vial for mating and after 24 hr they were transferred to a petridish containing a thin layer of food medium for egg laying for about 48 hr. Then flies were discarded. After larval eclosion, 10 first instars larvae were removed and carefully seeded in fresh culture vial (25 mm diam \times 100 mm length) and the vial was stoppered with cotton plug. For each strain, ten replicates were carried out. At the end of pupation time, the height of each pupa was measured. Pupation height was considered to be zero when larva pupated on food surface. These measurements were made when all the larvae had pupated but prior to the eclosion of adult. Pupation height was determined as the distance in mm of each pupa from the surface of food. In order to know the effect of sex on pupation height, each pupa after measurement of height was transferred to food vial and after the eclosion of adult its sex was noted. Thus mean pupation height was calculated for each strain on the basis of ten replicates (each replicate of 10 larvae).

RESULTS

Mean values of pupation height in mass culture wild stocks from two different population *of D.bipectinata* are given in (Table1a).

Table 1. Mean	value of	pupation	height (mm)) in Fructose	sugar
		paparon		.,	

1 (a). Mean value	e of Pupation	height	(mm) is differen	t mass culture normal strain of D .	bipectinata			
Strain	Pupation h	neight :	± SE	Total no. of pupae scored			Sex	
					Male	Ν	Female	Ν
Unchahar	4.89	<u>+</u>	0.046	100	4.94	48	4.38	47
Raebareli	4.53	+	0.025	100	3.94	54	4.79	42
Mean	4.71		0.035207		4.44		4.58	
	t = 1.	86, P>	0.05					
1 (b). Mean value	e of Pupation	height	(mm) is differen	nt mass culture normal strain of D.	nalerkotliar	ıa		
Strain	Pupation	height	± SE	Total no. of pupae scored			Sex	
					Male	Ν	Female	Ν
Unchahar	3.56	+	0.03	100	4.57	44	3.2	52
Bachharawan	3.51	<u>+</u>	0.02	100	4.65	46	3.9	54
Raebaereli	3.57	+	0.02	100	4.36	47	3.0	53
Salon	3.58	<u>+</u>	0.02	100	4.12	51	4.1	49
Mean	3.555		0.02		4.42		3.5	
	F = 0.79, P <	0.05						
1(c). Mean value of	of Pupation he	eight (r	nm) is different	mass culture normal strain of D. par	rabipectinat	а		
Strain	Pupat	tion he	ight ± SE	Total no. of pupae scored	Sex			
					Male	N	Female	N
Unchahar	1.94	<u>+</u>	0.032	100	3.2	42.0	3.4	48
Bachharawan	1.9	<u>+</u>	0.028	100	2.9	47.0	3.2	44
Raebaereli	1.86	<u>+</u>	0.029	100	4.0	53.0	2.7	47
Salon	1.87	<u>+</u>	0.045	100	4.3	50.0	3.8	42
Mean	1.8925		0.033587		3.6		3.3	
	F = 0.78, P <	0.05						

Table 2.	Comparison	of pu	pation	heights	between	different	species
							~ ~ ~ ~ ~ ~ ~

S. no.	Species	t- value	df	Р
1	D. malerkotliana vs D. bipectinata	-10.85	4	< 0.05
2	D. malerkotliana vs D. parabipectinata	88.11	6	>>0.05
3	D.bipectinata vs D. parabipectinata	26.79	4	>0.05

All the strains were cultured on simple culture medium containing agar, dried yeast, fructose, maize powder, nipagin, propionic acid and water. All the experiments were conducted in a room maintained at approximately 24^{0} C temperature with 60-80% relative humidity and 12:12 hr light and dark cycle. Virgin female and males were collected and 5 days old flies were used to initiate the experiments. Ten females and 10 males were placed in food

The average pupation height is 4.71 mm with fluctuation between 4.53 to 4.89 mm. To test variation in different strains analysis of variance was performed. The difference among the strains is highly singinficant. The average pupation height for mass culture wild strocks from different papulation of *D.bipectinata* has been considered as mean pupation height for species. Mean values of pupation height in mass culture wild stocks from two different population of D.malerkotliana are given in (Table1b). The average pupation height is 3.55 mm with fluctuation between 3.51 to 3.58 mm. To test variation in different strains analysis of variance was performed. The difference among the strains is highly significant. The average pupation height for mass culture wild strokes from different population of D.bipectinata has been considered as mean pupation height for species. Mean values of pupation height in mass culture population of wild stocks from four different D.parabipectinata are given in (Table1c). The average pupation height is 1.89 mm with fluctuation between 1.86 to 1.94 mm. To test variation in different strains analysis of variance was performed. The difference among the strains is highly significant. The average pupation height for mass culture wild strocks from different population of D.bipectinata has been considered as mean pupation height for species. A comparison of pupation height in male and female flies of each strain of all the three species was also observed. The mean pupation height of male larvae of D. bipectinata for fructose sugar was 4.44 mm with flucuation between 3.94 to 4.94 mm. For femele larvae, the mean value of pupation height was 4.58mm slightly lower than male larvae and fluctuates between 4.38 to 4.79mm (Table1a). A comparison of pupation height in male and female flies of each strain of all the three species was also observed.

 Table 3. Comparison of pupation heights between male and female

S. no.	Species	t- value	df	Р
1	D. malerkotliana	4.36	6	>0.05
2	D. parabipectinata	0.77	6	< 0.05
3	D.bipectinata	1	2	< 0.05

The mean pupation height of male larvae of D. parabipectinata for fructose sugar was 3.6 mm with fluctuation between 2.9 to4.3 mm. For female larvae, the mean value of pupation height was 2.3mm slightly lower than male larvae and fluctuates between 2.7 to 3.8 mm (Table1b). A Comparison of pupation height in male and female flies of each strain of all the three species was also observed. The mean pupation height of male larvae of D.malerkotliana for fructose sugar was 4.42mm with fluctuation between 4.12 to 4.65 mm. For female larvae, the mean value of pupation height was 3.5 mm slightly lower than male larvae and fluctuates between 3.0 to4.1 mm (Table1c). Comparison of pupation height between three different species of collected from different natural ecogeographic regions and cultured using fructose as resource media are given in Table (2). It is clear from t test value that all the three species differ significantly from each other. D.bipectinata has higher pupation height than D.malerkotliana and D.parabipactinata has lowest mean pupation height (Table 3).

DISCUSSION

In case of Fructose sugar Comparison of pupation height between three different species of collected from different natural ecogeographic regions and cultured using fructose as resource media are given in Table 2 and 3. It is clear from t test value that all the three species differ significantly from each other. *D. bipectinata* has higher pupation height than *D.malerkotliana* and *D. parabipactinata*

has lowest mean pupation height. A comparison of pupation height in male and female flies of each strain of all the three species was also observed. The mean pupation height of male larvae of *D. bipectinata* for fructose sugar was 4.44 mm with fluctuation between 3.94 to 4.94 mm. For female larvae, the mean value of pupation height was 4.58mm slightly lower than male larvae and fluctuates between 4.38 to 4.79mm. A comparison of pupation height in male and female flies of each strain of all the three species was also observed. The mean pupation height of male larvae of D. parabipectinata for fructose sugar was 3.6 mm with fluctuation between 2.9 to4.3 mm. For female larvae, the mean value of pupation height was 2.3mm slightly lower than male larvae and fluctuates between 2.7 to 3.8mm. A Comparison of pupation height in male and female flies of each strain of all the three species was also observed. The mean pupation height of male larvae of D.malerkotliana for fructose sugar was 4.42mm with fluctuation between 4.12 to 4.65 mm. For female larvae, the mean value of pupation height was 3.5 mm slightly lower than male larvae and fluctuates between 3.0 to4.1mm. Comparison of pupation height between male and female larvae of all the three species collected from different wild ecological region and mass cultured in lab. Condition using fructose sugar is given in table 1. It is obvious from t-test value that all the three species differs significantly for its male and female pupation height. D. bipectenata males have highest mean pupation height (4.44mm) than D..malerkotliana (4.42mm) and D. parabipectinata have lowest mean pupation height, in males (3.60mm). In female also, D.bipectinata has highest pupation height (4.58mm) followed bv D.malerkotliana (3.5mm) and D. parabipectinata (3.3mm). These variations in pupaqtion height among difference species of Drosophila in Fructose sugar compound are attributable to genetic heterogeneity among the diets tested (Singh B.N, 1988). Drosophila bipectinata pupation heights is higher than D. malerkotliana and Drosophila bipectinata because of species variation and different geographic origin, significant variations among all three species were observed. There is extensive evidence for genetic differentiation in Indian population of Drosophila (Grossfield), 1978). D. parabipectinata shows very lowers pupation height compare to D. malerkotliana and Drosophila bipectinata. The analysis of food materials and there geographic distribution appears to have more genetic variation than D. malerkotliana and Drosophila bipectinata (Sokal R. R. 1960).

Acknowledgement

The authors are grateful to the principal Feroze Gandhi College, Raebareli for providing necessary facilities.

REFERENCES

- Bauer, S.J., and Sokolowski, M.B. (1985) A genetic analysis of path length and pupation height in a natural population of *Drosophila melanogaster*, Can J Genet Cytol, 27, pp. 334–340.
- Chatterjee, S., and Singh, B.N. (1989) Sexual isolation in *Drosophila*, Indian Rev. Life Sci. 9, pp. 101-135.
- Deniz. F., Erezyilmaz, David L., Stern, (2013) pupariation Site Preference Within And Between *Drosophila* sibling Species, Evolut. Internati. J. organic evolution, 67(9) pp. 2714–2727.

- Grossfield, J. (1978) Non-sexual behaviour in *Drosophila*, In the Genetics and Biology of *Drosophila* (ed. M. Ashburner, and Wright, T. R. F. (New York Academic Press.), 2b, (2) pp. 1–126.
- Gupta, P., and Kumar, A (2017) Impact of malathion and Chlorpyrifos on Pupation site preference of male and female *Drosophila kikkawai*. International Journal of Advanced Life Sciences (IJALS) Volume (10) Issue (3). ISSN2277-758X.
- Gupta, P., and Kumar, A (2018) Post mating Changes in Vaginal region of Female Drosophila UnderNormal and Pesticides Treated Condition. International Journal of Current Research Vol. 10, Issue,05, pp. 49904-49905. May, 2018.
- Lathaise, D., Cariou, M,-L, David, J.R., Lemecnnier, F., Tsacas, L., and Ashburner , M. (1988). Historical biogeography of the *Drosophilla melanogaster* species subgroup. In Hecht. M.K. Wallace, B., and Prance, G. T. (eds.), Evolution Biology, Vol. 22, plenum press. New York.
- Markow, T.A. (1979) A survey of intra- and interspecific variation for pupation height in *Drosophila*, Behav. Genet. 9, (2) pp. 09-217.
- Markow, T.A. (1979) A survey of intra-and interspecies variation for pupation height on *Drosophila*.Behav.Genet.9, pp. 309-217.
- Nakul, B., Vandal Gudadappa, S., Siddalingamurthy Nanjaiah S., (2008) larval pupation site preference on fruit in different species of *Drosophila*.Entomol. Res. 38(3) pp. 188–194.
- Narasimaha, S., Kolly, S., Sokolowski, MB., Kawechi, TJ., Vijendravarma, R.K. (2015) Prepupal building behavior in *Drosophila melanogaster* and it evolution under resource and time constraints PloS ONE 10(2): e0117280, Doi: 10: 1371/journal Pone. 0117280.

- Panday, M., and Singh, B.N.(1993).Effect of biotic and abiotic facters on pupation height in four species of *Drosophila*, Ind. J. Exp. Biol. 31, pp. 912-917.
- Ramniwas, S., and Kumar, G (2019) Pupation site preference selection in *Drosophila jambulina*. Ethology Ecology & Evolution Volume 31, 2019 – Issue 4.doi.org/110.1080/03949370.1592230.
- Rodriguez, L., Sokolowski, M.B., and Shore, J.S. (1992) Habital selection by *Drosophila melanogaster* larvae. J. Evol. Biol. 5, pp. 61-70.
- Sameoto, D., and Miller, R., (1968) Selection of pupation site by *Drosophila melanogaster* and *D. simulans*. Ecol. 49, pp. 177–180.
- Schnebel, E.M., and Grossfield, J. (1986) The influence of light on pupation height in *Drosophila*. Behav. Genet. 16, pp. 407-415.
- Singh, R.S. (1989) Population genetics and evolution of species related to *Drosophila melanogaster*. Annu. Rev. Genet. 23, pp. 425-453.
- Sokal, R., Ehrlich, P., Hunter, P., and Schlager, G. (1960) Some factors affecting pupation site of *Drosophila*. Ann Entom Soc Am, 53, pp. 174–182.
- Sokolowski, M.B. (1985) Genetics and ecology of *Drosophila melanogaster* larval foraging and pupation behavior. J. Insect physiol. 31, pp. 857-864.
- Sokolowski, M.B., Bauer, S.J., Wai-ping, V., Rodriguez, L., Wong, J. L., and Kent, C. (1986) Ecological genetics and behavior of *Drosophila melanogaster* larvae in nature. Anim. Behav. 32, pp. 403-408.
- Spieth, H. T., and Ringo, J.M. (1983) Mating behaviour and sexual isolation in *Drosophila*. In Ashburner, M., Carson, H.L., and Thompson, J. N., (eds.), *the Genetics and Biology of Drosophila*, Vol. 3C, Academic Press, New York, pp. 223–284.
- Vandal N.B., Siddalingamurthy G.S., Shivanna N (2010) Effect of light and dark on larval pupation site preference in different species of *Drosophila*, J.Entomol. Res. 34 (3), pp.239-247.
