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ARTICLE INFO ABSTRACT

The main objective of this work is to carry out the thermophysical characterization of an eco-plaster made from
giant snails shells Achatina Achatina. To achieve this, it was first synthesized eco-plaster from snail shells
collected in nature. Thermal effusivity and conductivity measurements in transient mode and according to mixing
rate , were then carried out with hot strip method. Finally, a thermal behavior study face to surface heating and

cooling of specimens was carried out. The results obtained showed on one hand that thermal effusivity and
conductivity respectively decrease from 555.386 J.m . K . s . to 377.736 J.m . K . s . and from 0.159W.m .K to 0.104 W.m .K , when mixing rate increases from 1.8 to 2.7. In the same range of mixing rate,
a comparative study showed on other hand, that density, thermal effusivity and conductivity of synthesized eco-
plaster are lower than those of imported plaster. Surface heating tests with a constant heat flow for 180 s have
shown that temperature rise is the same for both types of plaster up to 15 s in mixing rate range from 1.8 - 2.7
and; up to 30 s for mixing rate of 3.6. Beyond 15 s and 30 s respectively for rates of 1.8 - 2.7 and 3.6, we note that
eco-plaster heats up faster than imported plaster. When heat flow is eliminated, we notice that the two plasters are
cooled in same way.
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INTRODUCTION
Faced with the energy poverty situation and while building
impact in terms of greenhouse gas emissions is very heavy,
eco-materials choice is crucial. These judiciously produced
materials like plaster and many others, can indeed limit the
building negative environmental impacts. Evrard et al. (2010)
cited by Kabore [2] showed that a plaster board with a density
of 900 kg.m-3 has a gray energy of 5.8 MJ.kg-1 and emits 0.22
kgCO2.kg-1, which is relatively low compared to other building
materials. Plaster uses are multiple. Plaster is used in building
(wall and floor cladding, partition walls, ceilings, decoration,
fire protection, hygrometric regulation, sound insulation) and
also in artistic field for shapes molding during production and
works restoration [3]. It is also used as in buildind sector as
insulating material considering its thermal conductivity less
than 2 W.m-1.K-1 (Langlais et al., 2004). In Benin, there is no
gypsum deposit for plaster production; as a result, plaster
supply for these applications is based exclusively on imports.
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However, there is a biomaterial available at lower cost which
can be used as raw material for plaster local production : snail
shells. According to Sodjinou et al. [5], a large quantity of
snails (about 62.5 tons) are delivered every year on Cotonou
market, which corresponds to about 216 shells tons. This
estimated quantity comes, not from a formal purchase
iniculture but, from collection of snails developing in wild.
This collection is favored by two rainy seasons recorded in
Benin. Snail consumption increase in Benin without purchase
iniculture promotion strengthens snails collection and is a
threat to biodiversity. Adherence to valorization vision of
uneaten parts of snails can encourage purchaseiniculture in
Benin. This work is therefore part of energy saving in housing,
environment protection and snail shells valorization in thermal
insulation field.

MATERIALS TESTED
Basic raw material : Acclimated giant snail shells achatina
achatina from Benin are the basic raw  material used in this
study (Figure 1).
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Figure 1. Giant snail shells achatina achatina

Eco-plaster synthesis from snail shells : Procedure is
summarized in Figure 2 After collection, snail shells were
reduced to powder in an oven at 900 °C. Powder thus obtained
was treated with excess sulfuric acid. After total
decarbonation, white paste obtained was separated from
supernatant and then rinsed with distilled water and
neutralized with an aqueous solution of calcium hydroxide.
Calcium sulfate paste thus obtained was filtered and rinsed
with distilled water.  Hydrated calcium sulfate obtained was
heated in a muffle furnace at (200 ± 5) °C for two hours in
open air, in order to obtain hemi-hydrated calcium sulfate
which is plaster (Karim et al, 2013).

Figure 2. Eco-plaster synthesis from snail shells

Plaster mixing :Mixing rate is water mass ratio to plaster

powder mass put into play to manufacture set plaster. In β-
hemihydrates case, this ratio varies between 0.5-1.2 and makes
β-hemihydrates commonly used as construction material. In α-
type hydrates case used in ceramics manufacture or in dental
industry, this ratio varies between 0.3 - 0.5 (Coquard, 1992 ;
Eve, 2003). When plaster setting, only a small fraction 18.6 %
mixing water participates in chemical reaction (Coquard,
1992). Additional water quantity provides a good paste
fluidity and determines material porosity after setting. In this
work, plasters were wasted at different ratios =1.8 ; 2.3 ; 2.7 and 3.6 (Table 1). Specimens densities were
determined. Indeed, preliminary mixing tests showed that is
impossible to dissolve plaster powder synthesized with snail
shells with a mixing ratio < 1 whereas it was possible for

commercial plaster used as reference. Indeed, during
dissolution experiments, water quantity corresponding to< 1 were insufficient to dissolve powder; which obliges to

supplement water quantity initially taken. These preliminary
tests led us to increase water quantities provided for mixing.
Plasters are finally elaborated with mixing ratios greater

than 1 and between 1.5 - 4. Plaster set results from rehydration
of semi hydrate in water during mixing operation. Mixing
protocol used is that described by Coquard (1992). Semi

hydrate powder was poured into water and stirred for about 30
seconds. Then it was left to rest for 30 seconds followed by
mixture agitation for 30 seconds. This agitation was followed
by another rest of 30 seconds and then a final agitation of 30
seconds until homogenization. Plaster setting was carried out
according to Equation (1):

(CaSO4,1/→ (CaSO42H2O) + 1/2H2O,2H2O) (1)

To obtain plaster taken, it was proceeded to mix at different
ratios = . ; . ; . . .

Table 1. Plaster mixing ratios

Water mass me (g) 67 83.7 100.5 134

Powder masse mp (g) 37 37 37 37
Mixing ratio 1.8 2.3 2.7 3.6

Samples manufacture: For test pieces manufacture, powder
mass equal to 37 g was retained after several tests. Indeed, it
represents the maximum powder mass that allows after mixing
with a water volume of 67 ml, to completely fill, without
material loss, the mold of (5 × 3.5 × 3) cm3 size used for
production of specimens intented for thermal measurements
(Figure 3). At the end of setting, samples ground in molds of
same volume have different densities. This shows that water
quantity used had acted on particles dispersion when plaster
setting.

Figure 3. Plaster specimens

Plaster density variation according to mixing rate : The

plot of density curve as a function of ratio shows a good

correlation (Figure 4) for the samples wasted with the ratios= . ; . . , for both imported and elaborated plaster.

With the samples obtained with ratio = . , it is noticed a

defect of setting and a very bad cohesion of particles ; which
causes them to crumble at touch. Therefore, it is retained that
ratio = . is too high to make plasters set with powders

used. The comparison of specimens densities for the same
mixing rate shows that the plaster made from snail shells is
less dense than the commercial plaster. This mass difference
for same volume indicates that when plaster is set, its
bassanite particles are more dispersed in mixing water than in
commercial plaster case. Thus, elaborated plaster samples
imprison a greater water quantity than those of commercial
plaster. Therefore, after water removal by microwave heating,
these samples become more porous and have a lower density.
This density difference will certainly lead to differences in
thermal properties between the two plaster types. These results
agree well with those of Jaffel (2006), which shows that
porosity increases with mixing rate; which consequently leads
to density reduction of material.
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Figure 4. Plaster density variation according to mixing rate

(DP = Developed plaster; RP = Reference plaster)

HOT STRIP METHOD PRINCIPLE

The hot strip was a rectangular-shaped electrical resistance
with thin thermocouple wires embedded. Temperatures were
measured at resistance center, avoiding thermal losses through
the electrical wires at one end of the resistance. The resistors
were inserted between two plane surfaces of the test samples
of dimensions large for the system to be considered semi
infinite medium in all directions during the experiment times
(Figure 5). The ratio of length to width of the resistance was
chosen so that heat transfer at center was bidirectional during
minimum testing time of 180 s (Meukam et al, 2004 ; Jannot,
2008). The hot strip method had advantages of simplified data
processing based on separated heat transfer models at the hot
strip center; unidirectional during time interval t1 for thermal
effusivity estimation by hot plane model, and bidirectional
during time interval t2 for thermal conductivity estimation by
hot wire model.

Figure 5. 2D model hot strip

Thermal Effusivity (E): The temperature recorded during time
interval t0 - t1 for heat transfer at resistance center in
unidirectional was used to estimate thermal effusivity of each
sample with hot plane model using Equation (2) (Meukam and
al, 2004; Jannot, 2008):

Thermal Effusivity (E): The temperature recorded during
time interval t0 - t1 for heat transfer at resistance center in
unidirectional was used to estimate thermal effusivity of each
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These results are consistent with the recorded thermograms.
Indeed, with a lower effusivity, heat flux at surface has
difficulty in circulating in material with lower thermal
conductivity. So on this surface, temperature measured will be
higher. In total, the low values of effusivity and thermal
conductivity recorded, made plaster a relatively higher thermal
comfort material than commercial plaster.
Sample heating and cooling thermograms: Figure 10 (10-a –
10-d) thermograms reflect heating and cooling thermal
behavior of plaster according to different mixing rate. Indeed,
a constant heat flow was imposed for 180 s (heating phase)
and then removed (cooling phase). These thermograms show
that heat flow propagates more in commercial plaster samples
than in developed plaster samples. It is also noted that this
propagation decreases as the ratio increases (or specimens

density decreases). The air presence in set plaster network
would contribute to this behavior. Depending on the ratios,

a temperature difference of 3 °C to 5 °C is recorded after 180 s
on the surfaces subjected to constant flow.
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Figure 10-d. Plaster samples heating and cooling
thermograms = .

CONCLUSION

The present work shows that it is possible to develop low
density plaster from Achatina Achatina snails shells. The
elaborated plaster mixing requires a water quantity of water
corresponding to > 1 ratios. Thermal measurements show

that elaborated plaster has relatively low thermal
conductivities and effusivities compared to commercial plaster
chosen as reference. These results contribute to snail shells
valorisation, which, instead of being considered waste thrown
in garbage, can be used as raw material for low density plaster
synthesis with interesting thermal characteristics. Synthesized
plaster can also better meet the comfort and energy needs in
building at low cost.
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NOMENCLATURE

a: Thermal diffusivity, m².s-¹
E : Thermal effusivity, J.K-1.m-2.s-0,5

L: Length, m
m: Mass, kg
R: Electrical Resistance, Ω
S: Surface, m²
T: Temperature, K
t: Time, s
w: Water content, %
x, y, z: Space variables, m

Greek letters

: Density, kg.m-3

: Thermal conductivity, W.m-1.K-1

θs: Laplace transform of probe temperature
: Heat flux, W

Indices / Exhibitors

s: Related to prob
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