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1.INTRODUCTION

Reading entire genomes of DNA is a monumental task, and current technology cannot read sequences of that length. As this
technology can read sequences of shorter length, genomes are broken into smaller sections using restriction enzymes (5). These
smaller sections can be read. Using the reads of these smaller sections, our goal is to reconstruct the full genome. To solve this
problem, we will be describing an algorithm using graph theory. Using the basics of graph theory, we will be creating a graph of
the list of k-mers which will be used in finding the final reconstructed genome (2).

We refer the reader to (4) for more details on a similar topic. This article is organized as follows. We explain DNA in Section 2.
The reason the problem we are trying to solve existsis explained in Section 3. One solution to the problem is shown in Section 4.
In Section 5, we describe the computation algorithm for genome reconstruction. We explain the problem at hand in more detail in
Section 6. We describe the basics of graph theory in Section 7. In Section 8, we describe the methodology used to construct the
graph of alist of k-mers. We describe paths in a graph of a list of k-mersin Section 9. In Section 10, we explain Eulerian paths
and the conditions for their existence. We describe the algorithm to finding a Eulerian cycle in Section 11, and in Section 12, we
describe the algorithm used to find a Eulerian path. We summarize our findings and conclusionsin Section 13.

2.DNA

Deoxyribonucleic Acid (DNA) is the blueprint of life. It is a double helix with two antiparallel strands and has al of the
information to code for an organism. Each chain in the DNA is called a DNA strand. The DNA is made up of nucleotides. Each
nucleotide has a phosphate group, pentose sugar, and a nitrogenous base (3). There are only four types of nitrogenous bases in
DNA: adenine (A), cytosing(C), thymine (T), and guanine (G). These nucleotides can be further sorted into two groups: purines
and pyrimidines. Purines are double-ringed while pyrimidines are single-ringed. A purine can only pair with a pyrimidine. The
two purines are adenine and guanine, and the pyrimidines are cytosine and
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Figure 1. Diagram of a nucleotide
thymine. This makes adenine and thymine complementary base pairs and cytosine and thymine complementary base pairs. For this
paper, we are not interested in the DNA structure, only sequences of the bases in each strand. Because of the complementary base
pairing, we do not need to know each strand’s sequence as the other strand’s sequence can be derived from the original strand’s

sequence. The sequence of bases in DNA can provide us information about mutations, diseases, evolutionary relationships, and
much more. Our ultimate goal isto be able to read full.
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Figure 2. Diagram of complementary base pairing

genomes. More specifically, we want to find all of the nuclectides in an entire genome and the order in which they appear. We
only need to find the sequence of one strand of the genome because of the reasons given above. This means, in this paper, a
genomeisonly along string of letters with each of the lettersis A, G, C, or T (1).

3. READING GENOMES

Every cell in our body contains a copy of our DNA in its nucleus. This means even a small droplet of a human’s bodily fluid can
contain billions of copies of the genome. Human genomes are about 3 billion nucleotides long, and current experiments cannot
read sequences of that length, but they can read sequences of shorter lengths. Because of this, genomes are broken into smaller
sections using chemical reactions. These smaller sections are read and used to reconstruct the full genome. The simple example
below illustrates this process.

Theoriginal genome:
AGGTCAGCTATCAGTACGTA
Genomesin the sample:

AGGTCAGCTATCAGTACGTA
AGGTCAGCTATCAGTACGTA
AGGTCAGCTATCAGTACGTA
AGGTCAGCTATCAGTACGTA

These genomes are broken down into smaller pieces, all of which are four letters, except the first and/ or last pieces of the genome
Genome sections:
AG GTCA GCTA TCAG TACG TA
AGGT CAGC TATC AGTA CGTA

A GGTC AGCT ATCA GTAC GTA
AGG  TCAG CTAT CAGT ACGT A
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We only keep the sectionsthat arefour letterslong.

GTCA GCTA TCAG TACG
AGGT CAGC TATC AGTA CGTA
GGTC AGCT ATCA GTAC
TCAG CTAT CAGT ACGT

These sections are now readable by experiments. These sections are called reads. These sequences will not be in the order they are
in the genome. So, they are listed in the lexicographic order below.

ACGT AGCT AGGT AGTA ATCA CAGC CAGT CGTA CTAT GCTA GGTC GTAC GTCA TACG TATC TCAG
The goa of this paper isto reconstruct the original genome using the reads.
4. GENOME RECONSTRUCTION WITH INSPECTION

Inspection is one method to reconstruct a genome. While it is useful, it is time-consuming and repetitive and therefore works best
with short genomes. The examples in this section are a continuation of the previous section.

A prefix is a sequence of letters excluding the last |etter of the sequence. A suffix is a sequence of letters excluding the first letter
of a sequence. For example, the prefix of ACGT is ACG, and the suffix is CGT. A kmer is a sub-sequence of text with k lettersin
each element. For example, TTC isa 3-mer.

To do reconstruction with inspection, you must have alist of k-mers. In this example, they are 4-mers. The list we will beusing is
this:

AAGC AGCC CGTA GCCA TAAG

You start by taking the first 4-mer and placing it with space above and below it. Like this:
AAGC

The next step isto find a 4-mer with a prefix that matches the suffix of the first 4-mer. AGCC meets these criteria. Y ou will then
place this 4-mer on top of the first 4-mer, leaving a space for the first character. This makes it so al of the matching letters
overlap.

AGCC
AAGC

Y ou continue this process by finding a 4-mer that matches one of the following criteria: the suffix of it matches the prefix of the
bottom 4-mer (AAGC), or the prefix matches the suffix of the top kmer (AGCC). The selected 4-mer must also not have been
selected yet. A 4-mer that matches these criteriais GCCA.

GCCA
AGCC
AAGC
This process continues until all of the 4-mers have been placed.

GCCA
AGCC
AAGC
TAAG

CGTA

Now that all of the 4-mers have been placed, we can reconstruct the genome. The letters in the columns are all the same. To
reconstruct the genome, bring down the letter in each column down.

GCCA
AGCC
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AAGC
TAAG

CGTA
CGTAAGCCA

This means the final genome is CGTAAGCCA. A genome cannot always be reconstructed using inspection. Sometimes, apoint is
reached where you cannot continue stacking k-mers. This also works best for short genomes because as the number of k-mers
increases, the more time consuming this task becomes. The goal of this paper isto complete this same task using a computational
algorithm.

5.COMPUTATIONAL ALGORITHM FOR GENOME RECONSTRUCTION

Our final goal is to recover genomes from the information given. To do this, we must define a few terms. A genome is a finite
sequence of letters. Each of the letters must be either A, C, G, or T. For example, AGTCTGATCGATCGTA is agenome. A k-mer
is a sequence of k letters. Again, the letters must be A, G, C, or T. A k-merof a genome is a sequence of k letters of the genome.
For example, AGTC is a 4-mer of AGTCTGATCGATCGTA because it appears in the genome. When referring to the k-mers of a
genome, we refer to the list of the k-mers in a genome. Going back to the previous example, the 3-mers of
AGTCTGATCGATCGTA are AGT, GTC, TCT, CTG, TGA, GAT, ATC, TCG, CGA, GAT, ATC, TCG, CGT, and GTA. The 3-mer
TCG isrepeated in the genome and, therefore, repeated in our list of 3-mers.

6. GENOME RECONSTRUCTION PROBLEM

The problem we are attempting to solve is given an input of a set of k-mers. Our goal is to provide an output of a genome whose
k-mers are the same as the input list. The order of the k-mersisirrelevant. If we are successful in doing so, we have reconstructed
the genome. For example, if theinput is TAC, ACG, GAT, ATT, TTG, a possible output is the genome TACGATTG. In alist of k-
mers, we can have no output, one output, or multiple outputs.

7. GRAPH THEORY

Solving the problem described above required the development of an algorithm that, if given a set of k-mers as an input, it will
output a genome whose k-mers are equivalent to the list inputted. The algorithm we used will be based on elements of Graph
Theory. Graph Theory is a branch of mathematics that studies graphs. We will be explaining the relevant conceptsin the theory.

A directed graph is a set of nodes and a set of edges. An edge connects two nodes and has direction. The two nodes an edge points
to are called the tail and the head. The edge begins at the tail and ends at the head (2).

Graphs are represented by drawings, where each node is a small circle, and each edge is an arrow. The arrow is drawn from the
edge’s tail to the head. An example is shown in Fig. 3. The table below illustrates each edge with its respective head and tail.

Figure 3. Example of agraph

Edge Head @ Tail
e Ny n,
€ Ny N
€ N3 N
e n, Ns

A path is a sequence of edges such that the head of g equals the tail of e.;. An example of apath ishighlighted inred in Fig. 4.
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A sequence is not a path if an edge is visited twice or if the head of one edge is not the next edge’s tail in the sequence. An
example of an edge being visited twice is shown in Fig. 5 and an example of a head of one edge not being the next edge’s tail is

shownin Fig. 6.

Figure 4: Example of a path
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Figure 5: Example of an edge being visited twice
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Figure 6: Example of one edge not being the next edge’s tail

8. GRAPH OF A LIST OF K-MERS

We will be using alist of k-mersto construct a graph. To do so, we must define the following. An element may appear more than
oncein alist but not in a set. To distinguish between the two, from now on, we will be using square brackets () to display lists
and curly brackets { } to display sets. In alist of k-mers, a k-mer may appear more than once in alist. Given that K isalist of k-
mers, the set N(K) isthe set of prefixes and suffixes of the k-mersin

K. For example, consider this list of 4-mers, K = (AAGT,GTAG,AGTC,TCGA,GATA). From each 4-mer in the list, we can extract
the prefix and the suffix. Thisisillustrated below.
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AAGT GTAG AGTC TCGA GATA ATAG
/N . SN SN P /N
AAG AGT GTA TAG AGT GTC TCG CGA GAT ATA ATA TAG

Figure 7: lllustration of the extraction of the prefix and suffix of a kmer

In blue, we have the prefix or suffix when it appears for the first time, and in red, we have the prefix or suffix that has already
appeared. The set N(K) is al of the blue 3-mers. N(K) = { AAG,AGT,GTA, TAG,AGT,GTC,TCG,CGA,GAT,ATA}. The notation for
the prefix and suffix for the k-mer w is prefix(w) and suffix(w), respectively. For example, prefix(GTGA) = GTG and
sufflx(GTGA) TGA. The graph of N(K) is defined below:

For each k-mer in K, an edge is defined that is labeled as that k-mer. The label is denoted as label (€).

For each (k-1)-mer in N(K), anode is defined that islabeled as that (k—1)-mer. The label is denoted as label (n).
Thetail of edge eisthe nodet such that prefix(label(e)) = label(t)

The head of edge e isthe node h such that prefix(label(e)) = label (h)

G(K) isthe graph of thelist of k-mersk. For example, consider thislist of 3-mers:
K = (AAG,AGC,GCT,CTA,TAG,AGC,GCC,CCA,CAT)

Theset N(K) is:

N(K) = AA,AG,GC,CT,TAAT,CC,CA

The table below contains al of the information on the graph:

Label of Edge Label of Head Label of Tail
AAG AA AG
AGC AG GC
GCT GC CT
CTA CT TA
TAG TA AG
AGC AG GC
GCC GC CcC
CCA CcC CA
CAT CA AT

The graph that is created from this information is Fig. 8. This graph labeled the edges, but it is not necessary as the label can be
found from the tail and head labels.

| _CTa \ At
[l — A ]

Figure 8: Graph of N(K)
9. GENOME OF A PATH IN A GRAPH OF A LIST OF K-MERS

Below are some definitions essential to the understanding of this section: Given a k-mer k, we denote the last letter of k by last (K).
For example, 1ast(AGTCTC) = C. Given two sequences of letters, u and v, we show their concatenation by u + v. For example,
TGCTA + TAG = TGCTATAG. Let K be a list of k-mers. Let G(K) be the graph of K. Let e, &, es....e.be a path in G(K). We
define the genome of this path aslabel(e)) + last(e,) + ............ + last(e,).

As an example, the same graph as above is shown in Fig. 9, but we label the edges that form the path e;,e,,63,64, in red. In this
example, the path is e,e;,65,64. Label(e;) is AGC, last(e,) = C, last(es) = A, last(e,) = T. The genome of this graph is AGCCAT. In
this example, the
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Figure 9. Graph of N(K) with path e;,e,e;,6;.

path is e, e;,e3,6;. Label(e)) isAGC, last(e;) = C, last(es) = A, last(es) = T. The genome of this graph is AGCCAT.

Let G(K) be the graph of K. Let e;,6;,6s....€, be a path in G(K). The k-mers of this path’s genome is the list of the labels of the
edges of the path. Thisis an important observation. In the case of the graph above, the genome of the path is AGCCAT. The list of
3-mers of this genome is (AGC,GCC,CCA,CAT). The list of the edges’ labels in this path is (AGC,GCC,CCA,CAT), which is the
same as the list of 3-mers. Let K be alist of k-mers. Let G(K) be the graph of K. Let e;,6,,65...., be a path in G(K). Assume this
path contains all the edges of G(K). Then the list of k-mers of this path’s genome is K. This genome is the solution to our genome
reconstruction problem. This means the answer to our genome reconstruction problem can be found by finding a path in G(K) that
contains al of the edges.

For example, consider the graph and path in the figure below. For graph G(K),K= (AAG,AGC, GCT,CTA, TAG,GCC,CCA,CAT).
In this example, the path e;,e,6s....63 contains all of the graph’s edges. Its genome is AAGCTAGCAT. The list of 3-mers of this
genome is (AAG,AGC,GCT, CTA, TAG,AGC,GCA,CAT), which is the same list that we used to create the graph. The graph is
illustrated in Fig. 10

e = o car_, f o)

Figure 10: Graph of K.

More than one path contains all the edges, and these different paths can lead to different genomes. For example, as illustrated in
Fig. 11, this graph has multiple genomes. One path results

\eA jtY—— ¢ —

Figure 11: Graph with multiple paths

in a genome of AGCGATCAGA, and another path resultsin a genome of AAGATCAGCGA.
10. Eulerian paths and conditionsfor their existence

In the last section, we reduced the genome reconstruction problem from the list K to finding a path in graph G(K) that contains all
its edges. We will continue to study that problem in this section. An Eulerian path is a path that contains all the edges in the graph.
So, if Kisalist of k-mers, and our goal is to reconstruct the genome with K, our goal isto find an Eulerian path of G(K). We will
not be worried about the fact that we can find more than one genome. Our goal isto find just one genome.

Let n be anodein adirected graph. The indegree of n, indeg(n), is the number of edges that have n as a head. The outdegree of n,
outdeg(n), is the number of edges that have n as a tail. An example of a graph with the nodes listed with their indegrees and
outdegrees listed is shown in Fig. 12.

Node | Indegree | Outdegree
Ny 1 1
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n, 1
N3
Ny 1 1

The sum of al of the indegrees equals the sum of all of the outdegrees. This is always true because every edge contributes to 1
indegree of its head and also contributes 1 to the outdegree of its tail. A connected graph is one that for every pair of different
nodes n; and n, there is a path that starts with an edge that has n; astail and ends with an edge with n, asits head. An example of a

n —
1 / S —— “2

Figure 12: Graph of K.

connected graph is shown in Fig. 13 and examples of graphs that are not connected are shown in Fig. 14.

B - .

Figure 13: Connected Graph

o y

Figure 14: Not connected graphs

A cycleisapath if thetail of e;isequal to the head of ,. An example of a graph with acycleis shown in Fig. 15 and examples of
agraph without a cycleis shown in Fig. 16. Let G be adirected graph with nodes V and edges E. Assume G is connected. G asan
Eulerian cycleif and only if indeg(n) = outdeg(n) for every node n. Let G be a directed graph with nodes V and edges E. Assume
G is connected. G has an Eulerian path that is not acycle if and if there exists a node a such that outdeg(a) - indeg(a) =

Figure 15: Graph with a cycle
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Figure 17: Graph with a Eulerian cycle

1, anode b such that indeg(a) - outdeg(a) = 1 and for every other node n, indeg(n) = outdeg(n). Also, any Eulerian path starts with
an edge having a asitstail and ends with an edge having b as its head.

11. ALGORITHM TO FIND AN EULERIAN CYCLE

In this part, we will be describing an algorithm to find an Eulerian cycle in a graph. We assume that such a cycle exists. So, we
assume that for node n, indeg (n) = outdeg (n). We describe the algorithm on a simple example, using the graph in Fig. 20.

Pick an edge. This can be any edge. Call it e;. Thisisshownin Fig. 21

f/ ) ___—-.- |
/ b .__\ J__.'
I | 1
\ ol b ;

Figure 18: Graph without a Eulerian cycle.

Figure 19: Graph G.
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Figure 2-(-):_-Graph of K.

Create a path until it is no longer possible to continue. Thisis shownin Fig. 22. If we had visited all the edges by the time we had
to stop because we could not continue, we would be done.

However, most of the time, as shown in the above example, thisis not the case. The black edges are not in this cycle. Asthe graph
is connected, at least one node in the cycle isthe tail of an edge that is not in the cycle. The next step isto go around the cycle and
stop at one of these nodes. Thisis shown in Fig. 23. The red node is the first node in the cycle ey, &, s, €, that has a black edge

coming out. This black edge was labeled es.

Retrace the cycle, but starting at the red node, and change the label of the__e_dg&s accordingly.

> ol B

Figure 21:

S o ._\\\. .

/ feq

Figure 22:

Figure 23:
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As shown in Fig. 24. Because we aways end at the same we started with when tracing a cycle, we ended at the red node.
However, the red node was selected because it has an edge coming out that is not in cycle. This was edge es. This means that we
do not need to stop. We can continue and obtain a cycle that contains all the edges of the red cycle and some new edges. Thisis
shown below. In the case below, we have an Eulerian cycle, and we are done. It is important to note that this is not always the
case, but we can continue repeating this strategy, and we will eventually end up with an Eulerian cycle.

Figure 25
12. ALGORITHM TO FIND AN EULERIAN PATH
Our original goal was to find an Eulerian path, not an Eulerian cycle. We first verify that such a path exists. To do that, we must
compute indeg(n) - outdeg(n) for every node n, and verify that this quantity is 1 for only one node, that we call b, it is -1 for only
one node, that we call 1, and is O for every other node. We then add an edge with b as tail and a as head. We now have that

indeg(n)-outdeg(n) for every node, and thus, there is an Eulerian cycle. Next, we find the Eulerian cycle in this new graph (with
the edge from b to a added).

We retrace the cycle, starting with the edge that comes after the added edge and stops just before the turn of this new edge. This
path is an Eulerian path.

These steps are illustrated below.
Add thered edge from b to a. Thisisillustrated in Fig. 27.
Find the Eulerian cycle. Thisisshownin Fig. 28.

Go around the cycle, but relabel the edges. Start at e, is the first edge after the red edge. The red edge would then be the last edge
of the cycle, but do not include it to end up with the original graph’s Eulerian path. This is shown in Fig. 29.

An Eulerian path in the example we have been considering is shown in Fig. 30.

Figure 26. Original graph.
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Figure 28
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Figure 29:

This leads to the genome TAATGGGATGCCATGTT.

_ A0
(ca) (aec)
i 1 A
[ 1A F={ aa }o AT —B— TG H-GT ¥ TT |

13 1415

Figure 30
DISCUSSION

In this short article, we discuss the method in which we solve the genome reconstruction problem. We discuss why this problem
exists, and how we can employ graph theory to solve it. We first go about the construction of a graph from alist of k-mers. We
then use this graph to first make an agorithm to find an Eulerian path, and then make an agorithm to find an Eulerian cycle. This
final Eulerian cycle will lead to a genome that as the same k-mers as the original list.
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