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The effect of radiation absorption on the onset of instability of a rotating fluid layer driven by convection is 
investigated when the fluid is heated from below in a porous medium taking into consideration viscous effect. The 
Boussinesq approximation is used for the radiative absorption in the energy equation. Using the linearised stability 
theory and normal mode analysis, the criteria for the onset of instability via stationary convection is obtained for 
the case of two free boundaries. Analytical expressions have been found for the onset of stationary and oscillatory 
instabilities and for the oscillatory frequency, which depend on the rate of radiation absorption. The critical wave 
number and the oscillatory frequency also depend strongly on this quantity. Graphs have been drawn and the 
results discussed with their help. The oscillatory thermal Rayleigh number for various values of of T,kc,  and B 
are shown in Table 1. 
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INTRODUCTION 
 
Many investigators have studied two-dimensional laminar boundary layer flow and convective heat transfer. Not much attention has been given, 
however, to cases where thermal radiation becomes an additional factor on the instability of rotating fluids. Recent developments in hypersonic 
flight, missile re-entry, rocket combustion chambers, power plants for interplanetary flight and gas cooled nuclear reactors, have focused 
attention on thermal radiation as a mode of energy transfer, and emphasized the need for an improved understanding of heat transfer. Researchers 
have investigated the various aspects of the instability of a fluid layer heated from below. Chandrasekhar (1961) found the critical Rayleigh 
Number as a function of the Taylor Number for an infinite layer of fluid, and his results have become the standards for comparison. Since then, 
the problem has been solved in other geometries using either ‘slip’ or ‘rigid’ boundary conditions or a combination of the two. Jeffrey et. al.  
(1982) considered a rectangular domain infinitely long in one direction, with free conducting horizontal surfaces and rigid insulating vertical 
surfaces. They found that for certain width-to-depth ratios large enough Taylor Numbers, the critical Rayleigh for steady convection is less than 
that for the infinite case even though the system is more constrained. They also found that over stability sets in before stationary convection (for 
Prandtl Numbers corresponding to air, water and mercury) when the Taylor Number is greater than about 200.This in marked contrast to the 
infinite case, where stationary convection always sets in first for ≥ 0.677  
 
Lapwood (1948) has studied the convection flow in a porous medium using linearised stability theory. The Rayleigh instability of a thermal 
boundary layer flow through a porous medium has been considered by wooding (1960) whereas Scanlon and Segel (1793) have considered the 
effect of suspended particles on the onset of Bernard convection and found that critical Rayleigh Number was reduced solely because the heat 
capacity of the pure gas was supplemented by the particles. The suspended particles were thus found to destabilise the fluid’s layer. El Mekki 
(2003) studied the thermal instability of a non-uniformly rotating fluid layer heated from below with emphasis on stationary convection and 
over_ Stability. In his result, it was established that in both types of instability the effect of the variation of the rate of rotation is to introduce a 
new branch to the marginal instability curves of uniform rotation which departs from them towards a zero of the Rayleigh Number as the 
horizontal wave Number approaches zero. Govender (2003) used linear stability theory to investigate analytically the effect of gravity on 
centrifugally driven convection in a rotating porous layer offset from the axis of rotation. He demonstrated in his work that the stationary mode is 
the critical mode of convection thereby resulting in the convection rolls being aligned parallel to the axis of rotation. Israel-Cookey et.al. (2007) 
studied the effects of Radiation on the linear stability of a horizontal layer in a fluid saturated media heated from below.  In the works cited 
above, none considered the effect of radiation on the onset of instability of a rotating fluid in a porous medium. The aim of this present paper is  
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to study the onset of instability of a rotating fluid bounded by two horizontal parallel plates with radiation absorption when viscous effects are 
taken into consideration in a porous medium. To demonstrate this we apply the classical linear stability theory of Chandrasekhar (1961) and 
adopt the Rosseland differential approximation for the radiation absorption Sparrow and Cess (1978). 
 
Mathematical Formulations 

 We consider a rotating fluid layer of height, d 0  bounded between two horizontal parallel layers located at Z= +  and z= Z= −   in a 
porous medium taking into consideration viscous effects. The physical model and Cartesian coordinate system (x, y, z) with Ω being the angular 
velocity of the rotating fluid are shown in Figure 2.1. 
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Figure 2.1: Physical model and coordinate system 
 

Where u, v, and w are the velocity component along x-, y- and z-axes. The temperatures 1T  and 2T  are imposed at the bottom and top layers 
respectively. The equation of flow, momentum and energy taken into consideration the effect of radiation absorption are, Chandrasekhar (1961); 
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Further, by assuming density linear dependence on 'T  we adopt the Boussinesq approximation 
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We take a horizontal coordinate 'x  and a vertical component 'z which increases vertically upwards. Then, under the Boussinesq 
approximation, equation (2.4), the momentum and energy equations become 
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where V


 is the velocity vector, k


  k is the unit vector in the upward direction, P the fluid’s pressure,
0
   is the kinematic viscosity,  

the thermal diffusivity, and PC is the specific heat capacity of the fluid; 
 
The boundary conditions we propose in this problem are; 
 

2
,0 '

1
'' dzatTTV                                                                                                             (2.7) 

 

2
,,0 '

2
'' dzatTTV    

 
Now since the fluid is considered to be grey, absorbing/emitting and radiating in a non-scattering medium, the optically thick approximation is 
imperative. Hence the radiative heat flux rq could be approximated by the Rosseland differential form as used in Israel-Cookey et.al (2007) 
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where   is the mean absorption coefficient and   the steffan- Boltzmann constant. Further, we assume that the temperature differences within 

the fluid and the porous medium is sufficiently small for which 
4'T  can be expressed as a linear function of 'T .By employing Taylor’s series 

expansion about the reference temperature, 0T  and neglecting higher order terms yield; 
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The energy equation, upon using (2.10) become 
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On introducing the following non-dimensional parameters and variables: 
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where TR is the thermal Rayleigh number, rP the Prandtl number,   the porosity parameter, 2B  and T  are the non-dimensional radiation 
absorption and Taylor’s number respectively. Using Equations (2.10) and (2.12), the model is transformed into the following non-dimensional 
form of equations: 
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With boundary conditions: 
 

w=0,
2
1

  at 
2
1

Z                                                                                                                  (2.16) 

 
Linear Stability Analysis 
 
Basic flow and linearization   
 
The basic state of the system is given by the basic static solution V=0 of the system of equations (2.13)-(2.15), in which corresponds the static 

temperature ST  and static pressure SP  given respectively by 

 

ST
r

S TR
Pdz

dP 1
                                                                                                                                (3.1)  ̀

 

02

2


dz

Td S                                                                                                                                               (3.2) 

 
Subject to the conditions 
 

2
1

ST  at 
2
1

Z                                                                                                                         (3.3) 

 
The solutions of equations (3.1) and (3.2) subject to (3.3) yield the basic state of the system: 
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Now to access the stability of the steady solutions, we assume small perturbations around the basic solution, (Chandrasekhar (1961); Drazin and 
Reid (2004));  
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Following the classical procedure of linear mode analysis (Chandrasekhar (1961); Israel-Cookey et.al. (2007)), we substitute equation (3.6) into 
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Since ST =-Z, equation (3.9) becomes 
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Equation (3.8) and (3.10) are to be solved subject to the boundary conditions  
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Next we reduce the momentum equation (3.8) to a scalar by taking the curl and double curl of it, using the equation of continuity (3.7) and 
keeping the only vertical component of the velocity w, yields 
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Effect of Perturbation and Normal Mode Analysis  
 
Following the classical approach of Chandrasekhar (1961), we analyse an arbitrary disturbance into a complete set of normal modes and examine 
the stability of each of these modes individually. For the problem in focus, the analysis can be made in terms of two-dimensional periodic waves 
of assigned wave numbers. Thus we ascribe to all quantities describing the perturbations of dependence on x, y and t of the form; 
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Substituting equation (3.14) into equations (3.10), (3.12) and (3.13) taking (3.15) into consideration, we have the following set of equations  
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The elimination of   and   from equations (3.16) and (3.17) and using the results in equation (3.18) give the following equation satisfied by 
w: 
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Here, we assume that the temperature at the boundaries is kept fixed, the fluid layer is confined between two free boundaries and adjoining 
medium is electrically non conducting. The boundary conditions appropriate to the problem are Chandrasekhar (1961), Veronis (1965) 
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W must vanish for z=±  and hence the appropriate solution of W characterising the lowest mode is 
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Substituting equation (3.21) into (3.19) and simplifying, we have 
 

       hPkThPkhkk rr
2222222222   hk

kRT 


222
2

        (3.22) 

 
or                                                                         

 

         hkThkhkk
hkk

RT PrPr 2222222222
2222 



 


       (3.23) 

 
where 
 

21 B   
 
Haven established the expression for the thermal Rayleigh number; we are now in a position to study the stationary and oscillatory convections. 
 
CASE I:   STATIONARY CONVECTION 
 

To study the case of marginal instability which corresponds to stationary convection, we set 0h and ksT RR  in equation (3.23) and 
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The critical wave number can be obtained by setting ckk   and finding the minimum of  cks kR  as follows 
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This results in a tenth order polynomial in kc given by 
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CASE II: OSCILLATORY CONVECTION (INSTABILITY) 
 
Here, we consider the possibility of oscillatory instability setting into the rotating fluid layer. The oscillatory frequency is given by Govender 
(2003); 
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Simplifying equation (3.55) and separating the real and imaginary parts, we have 
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Since the Rayleigh number is real, it is sufficient to consider   as purely imaginary for some real s .Thus, equating equation (3.57) to zero we 
find 
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The solution of equation (3.58) for various values of  rc PandTk ,  are summarised in table 1 
 

RESULTS AND DISCUSSION 
 
For the analysis of the effect of radiation absorption on the onset of instability of rotating fluid layer in a porous medium, we have equation 
(3.24) to be;   
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Further, Equation (3.26) is a tenth degree polynomial in the critical wave Number,kc and its roots cannot be solved analytically and so we resort 
to numerical methods. For the numerical solution we use the software ‘Mathematica’ (Wolform (1991)).Using the parameters ℵ = 0.18 and 
T=0,the roots of Equation (3.26) gives ten roots in kc in which only one of the roots is real i.e. kc =2.22130 ≈

√
  and the remaining nine are 

complex conjugates. This value of kc agrees well with the classical Rayleigh-Bernard problem of Chandrasekhar (1961).  In fig 1, thermal 
Rayleigh number RT is plotted against the critical wave number kc for  =0.2 B=0.0, 0.5, 1.0 and T=10.From the graph it is evident that B is a 
stabilising factor. Increase in B from 0.0 to 0.5 shows a decrease in Rayleigh number while appreciable increase corresponds to increase in 
Rayleigh number. Thus, for stationary convection, the variation of B for fixed   and T delays the onset of instability in the system. Figs (2&3) 
shows the dependence of thermal Rayleigh number RT on the wave number kc.  In fig 2 thermal Rayleigh number is plotted against kc for 
=0.0, 0.5, 1.0,B=0.3,T=10.It is evident that increase in   with both B and T fixed have the effect of decreasing the thermal Rayleigh number. 
However further increase in both   and B leads to increase in thermal Rayleigh number RT.  In figure 3 it is clear that simultaneous increase in 
both B and   enhances the onset of instability of the rotating fluid with greater destabilisation occurring at higher values of the thermal 
Rayleigh number. 
 

In Table 1, the oscillatory critical Rayleigh number,
)(c

TOSR  increases as the radiation parameter, B increases from 0.0 to 1.0 for

i8571.141  , i8571.142   and 221.2ck  .This shows that in the absence of rotation, the onset of instability is delayed. But 

from row two of the same table with T=10 and 22565.2ck , the oscillatory Rayleigh number increases as B increase from 0.0 to 1.0. 

However, for ,7779.141 i oscillatory Rayleigh decreases for every increase in radiation parameter, B. The situation is similar in rows 3 
and 4. This revealed to us that stability is enhanced as the rotation increases. 
 

 
Figure 1: Variation of thermal Rayleigh number, TR  with critical wave number for fixed porosity,  =0.2, Taylor number T =10 and varying radiation 

B=0.0,0.5,1.0 
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Figure 2: Variation thermal Rayleigh number with critical wave number for fixed radiation parameter, B=0.3 Taylor number T =10  ℵ=0.0,0.5,1.0 

 

 
Figure 3: Variation of thermal Rayleigh number, TR  with critical wave number, ck  for simultaneous increase in porosity,  =0.0,0.5,1.0 radiation 

parameter B=0.3,0.3,0.8 and fixed Taylor number T =10 
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Table 1. Variation of Oscillatory critical thermal Rayleigh number with critical wave number for various values of B and T 
 

Taylor Number wave number Growth Rate Oscillatory critical thermal Rayleigh number 
T   B=0.0 B=0.2 B=0.4 B=0.6 B=0.8 B=1.0 
0 2.221 -14.8571i 153.0863 159.2098 117.2030 208.1971 252.0617 306.1725 
0 2.221 14.8571i 0.9120 0.0948 0.1058 0.1240 0.1496 0.1824 
10 2.2256 -14.7779i 226.9809 236.0600 263.2974 308.6931 372.2482 453.9606 
10 2.2256 14.7779i -272.7524 -283.6624 -316.3924 -370.9423 -447.3136 -545.5035 

100 2.2629 -14.2770i 150.5177 156.5383 174.6009 204.7039 246.8490 301.0361 
100 2.2629 14.2770i -264.6713 -275.2580 -307.0195 -359.9529 -434.0611 -529.3440 
1000 2.5621 -7.5595i 113.8219 118.3746 132.0334 154.7975 186.6676 227.6439 
1000 2.5621 7.5595i -76.7758 -79.8467 -89.0599 -104.4148 -125.9121 -153.5516 

  

Conclusions  
 
Thermal instability of a rotating fluid in a porous medium has been investigated. Expressions for thermal Rayleigh number, critical thermal 
Rayleigh number and oscillatory thermal Rayleigh number have been derived. From the analysis of the results, the principal conclusions are as 
follows; 
 

(1) Increase in the radiation parameter delayed the onset of  instability in the system for fixed porosity,   
(2) Higher values of radiation parameter ,B are associated with greater stabilization of the system 
(3) The presence of rotation and medium permeability introduces oscillatory modes. 

The effects of various parameters,  , B, T on the thermal instability have also been shown graphically in figures1-4 and Table 1 
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Figure 4. Variation of thermal Rayleigh number, TR  with critical wave number for simultaneous increase in porosity,  =0.0,0.0,1.0 radiation 

B=0.3,0.3,0.8 and Taylor number T =10,100,100 
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