ISSN: 0975-833X

Available online at http://mww.journalcra.com
INTERNATIONAL JOURNAL

OF CURRENT RESEARCH

International Journal of Current Research
Vol. 13, | ssue, 06, pp.17736-17744, June, 2021

DOI: https://doi.org/10.24941/ijcr.41616.06.2021

REVIEW ARTICLE OPEN ACCESS

PARALLEL SCHEDULING OF GRID JOBS ON DUOCORE SYSTEMS

USING GROUPING METHOD

Goodhead T. Abraham!*and Evans, F, Osaisai?

Computer Science Department, Faculty of Science, Niger Delta University, Yenagoa, Nigerial*
Mathematics Department, Faculty of Science, Niger Delta University, Yenagoa, Nigeria2

ARTICLE INFO

ABSTRACT

Article History:

Received 14" March, 2021
Received in revised form

25" April, 2021

Accepted 28" May, 2021
Published online 26" June, 2021

Key Words:

Multicore, Parallelism,
Multi-scheduling, Machine Grouping, Job
Grouping, Parallel-Scheduling.

*Corresponding author:
Dr. Abraham, T. Goodhead

Grid computing has continued to gain applicability in various spheres of computing while multicore
computers are also becoming ubiquitous. Most grid scheduling agorithms remain sequential while
several attempts at parallelizing grid scheduling rely on the underlying hardware. To leverage the grid
to meet the growing global computing need, a method to increase the efficiency of grid scheduling on
paralel systemsis required. This work aims at enhancing the parallel scheduling of Grid jobs on a
duocore system. An arbitrary method was employed to group machines, a summation of the tota
orocessing power of machines in each group was computed. Then, a size (of jobs) proportiona to
orocessing power (of machines) was used to allocate jobs to machine groups. The MinMin scheduling
algorithm was implemented in parallel (multi-scheduling) within the groups and aso implemented
without the group method to schedule the same range of jobs on a single processor machine and on a
Juocore machine. A performance improvement of 16%, 49%, and 71% was recorded on the duocore
system by the group method over the ordinary MinMin method using two, four, and eight groups
respectively. We find that the group method increased the performance of the scheduling algorithm
on duocre systems. Secondly, we find that the ordinary MinMin agorithm benefited from the
dnderlying parallelism of the duocore but not as much as the group method. Thirdly, we find that
oerformance of the scheduling agorithm increases as the number of groups increases. We conclude
that job grouping and multi-scheduling enhance performance significantly on the ducore system.

Copyright © 2021. Goodhead T. Abraham and Evans, F, Osaisai. Thisis an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Current Research, 13, (06), 17736-17744.

[Citation: Goodhead T. Abraham and Evans, F, Osaisai. “Parallel scheduling of grid jobs on duocore systems using grouping method™, 2021. International]

INTRODUCTION

Secondly, most grid scheduling researches are concerned with
scheduling parallel jobs rather than scheduling jobs in parallel,
and thirdly, several attempts at paralelizing scheduling

Multicore systems are increasingly becoming prevalent due to
gains made in hardware computing technology and Grid
computing has been acclaimed as the paradigm to solve the
ever-increasing computing need of an ever-demanding world
(1) and (2). This means more grid infrastructures will be
comprised of multicore systems in the future and the need to
exploit the gains of multicore systems to the benefit of the grid
is necessary. Scheduling algorithms in grid computing have
largely remained sequential; there by falling short of
maximizing the gains associated with parallel systems.

*Corresponding author: Goodhead T. Abraham,
Computer Science Department, Faculty of Science, Niger Delta
University, Yenagoa, Nigeria.

algorithms mainly rely on the underlying hardware, and aso
paralelizing sequential algorithms is not completely attainable
due to bottlenecks from the non-paraléizable sections.
Multicore systems provide the solution to the growing
processing need of man, for the grid to achieved its numerous
computing goal, a concerted effort aimed at exploiting the
benefits of multicore systems is required. This paper seeks to
harness the benefits of multi-core systems by employing
grouping methods to improve parallelism in the scheduling of
Grid jobs on a duocore machine. The method randomly selects
machines into a group, then sums the total processing power of
all machines in each group, a job balancing algorithm uses the
ratio of the total processing power of the machine group to
determine and alocate grid jobs to the machine groups. In

17737

Goodhead T. Abraham and Evans, F, Osaisai, Parallel scheduling of grid jobs on duocore systems using grouping method

varied experiments, the MinMin algorithm is implemented
using the group method and also implemented separately on a
single processor machine and also on a duocore machine and
the length of scheduling recorded. The remainder of the paper
is organized as follows. The next section discusses related
literature. The proposed method, experimental setup, results
and analysis is discussed after the literature. This is followed
by recommendation. Then the last section discusses conclusion
and thoughts for future work.

Related Work

This section discusses related work.

The Multicore Era: The continued growth of computer
hardware technology was predicted by (3) while (4) hinted that
limiting factors on serial computing would impede the
continuous production of serial computers. Thisled (5) and (6)
to predict the death and ‘level off” of the Moore’s law. These
predictions changed the direction of computer growth towards
multicore technology which is seen as the dominant choice for
modern computing platforms now and in the near future (6)-
(11). Advances in computing technology come with improved
performance, speed, efficiency, and increased throughput (12).
However, it has been shown that sequential algorithms do not
completely gain from parallel systems and secondly, execution
of sequential agorithms impedes performance on paralel
systems (13) and (14). To leverage the grid for the growing
computing need, in tandem with the global goals for innovative
and sustainable development, a method that exploits the
efficiency of parallel systems in grid scheduling is required.
Several researchers including (15), (16), (17), and (18)
proposed a total change in programming models — from
sequential to paralel programming. Therefore, multicore
computing calls for a new way of programming and software
development.

The Grid: The grid is composed of an aggregate of powerful
super computers, multiple computing clusters, large scae
distributed networks and the connectivity of several other
heterogeneous resources operating on diverse owner policies.
(19) opined that the Grid can change the way complex
problems are solved, provide large-scale aggregation and
sharing of computational data and other resources across
institutional boundaries or virtual organizations. For these
goals to be attained, the potentials of the grid must be properly
harnessed and an efficient scheduling paradigm be exploited
(20) and (22).

Some Parallel Scheduling Attempts. (22) noted that every
major advance in computing technology comes with a change
in programming model, the birth of the multicore has led to
many researchers attempting to parallelize processing and
scheduling agorithms by directly executing sequential
algorithms on parallel systems. (23) implemented CPU and
GPU multi-threaded parallel designs of the MinMin algorithm.
(24) implemented a memetic algorithm that combines non-
deterministic approaches to improve speed up in scheduling in
a GPU environment. (25) presented an online algorithm with a
competitive ratio that minimized the maximum machine load
on three hierarchical machines. (26) implemented a paralel
fixed-point algorithm to find the solution of the total variation
model for phase demodulation on multi-core CPU and GPU
using OpenMP and CUDA and achieved up to 9x on multi-
core and 103x on GPU.

(27) implemented the affinity-based scheduling using Bayesian
analysis model and groups or clusters of dependent tasks and
achieved improvement of 5.57% to 9.05%. This work is an
effort aimed at investigating further the effect of increasing the
number of cores in relation to increasing groups and how this
might affect the parallel scheduling of Grid jobs.

Group Scheduling: Group scheduling has been exploited
differently in researches, (28) used gang scheduling to execute
different parts of cooperating processes in a multiprocessor
system. (29) grouped jobs before transmitting to Grid
resources for computation. (30) explored the advantages of
grouping light-weight or small jobs to coarse-grain jobs before
scheduling to reduce the communication computation ratio
(CCR). (31) exploited CPU-GPU computer architecture to
speedup queries from high-dimensional holistic data cubes.
(32) code transformation exposes data parallelism latent in
task-parallel applications and enhance resource utilization and
speedup on chips to facilitate parallelism on the hardware. (33)
used the Bees Algorithm (BA) to minimize makespan on
resource-constrained project scheduling problem (RCPSP) but
the method was narrowed to RCPSPs. (34) applied Inter Linear
Programming strategy to schedule Precedence-Constrained
Task Graphs (PTGs) and attained significant improvement in
scheduling. (35) implemented a recursive divide and conquer
algorithm that improved probability and efficiency for a class
of dynamic programming problems in multicore systems. (36)
proposed the multi-functional based scheduling framework to
solve the duplication-based scheduling problem, the work
successfully improved the schedule length and optimized
energy consumption in the multicore system.

Most of these works were executed on paralel systems but
restricted to specific problem areas. However, the methods rely
solely on the underlying hardware for parallelism as no known
method was implemented to parallelise the scheduling. This
research employs grouping not as a means of turning fine-grain
jobs into coarse-grain jobs but to help create platforms to
independently schedule jobs in parallel, taking advantage of
the multicores. Parallelizing sequential codes is quite a
difficult task as most algorithms are sequential, however, some
attempts have been made to improve performance on parallel
systems. (37) executed a method that improves parallelism by
grouping machines and jobs before scheduling and achieved a
good result in scheduling, but the group cardinality was not
dynamic, and this affected the efficiency of the results. (38)
then exploited a method that varied the number of groups and
attained improved scheduling efficiency. They however
recommended that the effect of increasing the (CPUs) was
necessary to be investigated further. (39) also exploited various
methods for grouping grid jobs and machines before multi-
scheduling on HPC systems.

Parallel Scheduling of Grid jobs on a duocor e system using
grouping method: This research proposes a job and machine
group methods aimed at enhancing Grid scheduling on a
duocore machine. The proposed method alows for the
simultaneous execution of several instances of the MinMin
algorithm within independent groups (multischeduling). The
method employs a random method to group Grid machines.
The total processing power (or processing speed) of machines
in each group is determined. A
size proportional_to_speedmethod is used to assign jobs to
machine groups, this is done to ensure a balanced distribution
of jobs to machine groups. Several instances of the MinMin

17738

International Journal of Current Research, Vol. 13, | ssue, 06, pp.17736-17744, June, 2021

algorithm are then implemented to independently schedule
jobs to machine groups in paralel. The simultaneous execution
of severa scheduling instances within each group is referred
hereto as multi-scheduling.

Size proportional to speed Grouping method: The size
proportional to speed grouping method (SpdRnd) uses the total
processing power of all machines in each group to compute a
ratio used to determine the size of jobs to be assigned to each
machine group. Based on the computed ratio, the first N jobs
making up the ratio for the first group are allocated, then the
next N jobs making up the ratio for the next group are
alocated. This is continued until all jobs are alocated. The
algorithm for estimating the size of jobs to be allocated to a
group isshownin Table 1.

Table 1. Speed proportional to Job Allocation M ethod

Stepl: Start
Step2: get sum of processing power of machines in each group
S'"-nGrou i
pi
Step3: get cumulative processing power of machines in all

groups Sumrota,

Step4: sum total size of all jobs Sijobs
Step5: Edtimate size of jobs to be allocated to each group
S'"-nGroupi / S'"nTotal

Step5i: Allocatefirst N jobs of ratio to group i

Step5ii: Increment group count

Stepb5iii: allocate next N jobs of ratio to group i+1

Step6: Repeat Step5i to Step Siii until al jobs are assigned
Step7: Stop

Machine Grouping: Table 2 shows the agorithm to group
machines and compute the total processing power.

Table 2. Random M ethod to group machines and
sum the processing power

Stepl: Start

Step2: GroupTotal=0

Step3: SumTotal=0

Step4: For Group 1 to g (g isthe number of job groups)
Step5: Randomly

a.Select amachine

b.Insert to a group (groupi)

c.Increasegrouptotalwith machine processing power: S.II’T‘]GrOUpi
+

Machine
dincrease Total with machine processing power Sumrota,

+Machine
Step6: iterate step Suntil all machines are assigned
Step7: Stop

Grid Machines. Each Grid site is made of hundreds to
thousands of computing machines with different attributes.
These are the machine identification (MId), speed of processor
(SP), number of processor cores (NPC), and RAM size in KB
or GB.

Grid Site: The Grid is characterized by different attributes
ranging from the number of processing machines, policies,
network bandwidth, computing resources, and configuration.
The computing resources are also characterized by different
attributes that differentiate them from others — like size, speed,
and the number of cores or processors. Table 3 shows the
attribute of the Grid site used in the simulation experiment.

Table 2 Composition of Grid site used in the simulation
experiment

Attributes
Network bandwidth
is categorized into
4, 3, 2 and 1.
Representing
Super-Fast (SF),
Vey Fast (VF),
Medium Fast (MF)
and Not Fast (NF)
This refers to the | The number of
number of machines | machines was not
contained in the | categorized

Grid site. because they vary
from time to time
This refers to the | Name or number or
Grid site, the | combination of
features that | both

identify them. It can
be a uniquely given
number or a seria
number.

Features Characteristics
Network The network
Bandwidth bandwidth
determines the
speed of connection
of the Grid site.

Number of
Machines

Grid ID

Simulation of Grid, CPU Speed and Number of Cores. The
Grid was simulated to compose: CPU; RAM; Bandwidth. A
grid represented as { A; 2000; 5000000; 3000} translates to
Grid site A, with 2000 CPUs, RAM size5000000, and 3000
Bandwidth. Table 4 shows the composition and characteristics
of the machines simulated in each Grid site.

Table 4. Composition of machinesin the Grid site

Grid Characteristics Grid Characteristics
Site/ No of | Speed of No of | Site/ No of | Speed of | CPU/
No of | machin | CPU CPU/ | No of | machi | CPU Cores
Mach | es Cores | machi | nes
ines nes
A 30 4GHz 1 C 40 1.5GHz 2
240 20 3GHz 1 480 40 2GHz 2
30 2GHz 1 50 3.5GHz 2
20 1GHz 1 50 4GHz 2
10 4GHz 2 70 1.5GHz 4
10 3GHz 2 70 2GHz 4
10 2GHz 2 80 3.5GHz 4
10 1GHz 2 80 4MHz 4
B 60 3.5GHz 2 D 60 1.5GHz 2
400 60 4GHz 2 600 60 2GHz 2
60 1.5GHz 2 60 3.5GHz 2
60 2GHz 2 60 4GHz 2
40 3.5GHz 4 60 1.5GHz 4
40 4GHz 4 60 2GHz 4
40 1.5GHz 4 40 3.5GHz 4
40 2GHz 4 40 4GHz 4
40 1.5GHz 8
40 2GHz 8
40 3.5GHz 8
40 4GHz 8

Computing machine was simulated as: CORES; CPU; RAM.
For instance { 4; 3000; 4000000} refersto a Grid machine with
4 CPUs, 2000 MHz or 2GHz and 2000000B or 2MB.

Source of data: Jobs for the experiment was downloaded from
the Grid workload archive provided by (40) for researchers and
developers.

Experimental Design: A total of four experiments were
carried out across the two computing platforms (a single
processor machine and a duocore maching). In the first
experiment, the ordinary MinMin algorithm was executed on a
single processor system to schedule a range of jobs (from 1000
to 10000 in steps of 1000). The second experiment was
executed on a duocore system.

17739

Goodhead T. Abraham and Evans, F, Osaisai, Parallel scheduling of grid jobs on duocore systems using grouping method

It implemented the ordinary MinMin algorithm to schedule the
same range of jobs as in the first experiment. The third
experiment was executed on a single processor system. It used
the random method to group machines and the proportionality
method to group jobs before implementing the MinMin
scheduling algorithm within the paired groups to schedule the
same range of jobs as in the first experiment. The fourth
experiment was executed on a duocore system, it used the
random method to group machines and the proportionality
method to group jobs before implementing the MinMin
scheduling algorithm within the paired groups to schedule the
same range of jobs as in the first experiment. In each of the
four experiments, several runs were made using 2, 4, and 8
groups in turn. For each group, the number of threads used was
varied between 1, 2, 4, and 8. For each of the combinations,
the time taken to schedule and the makespan for each variation
was recorded.

System Properties. The configuration of the single processor
and the duocore machines used for the experiment is shown in
Table5.

Table 3. Properties of the systems

Single processor system: Duocore:
Processor:Intel(R) Pentium(R) | Processor: Intel(R) Core(TM)
4 CPU 3.00GHZ3.00GHz i5-320M CPU @2.50 GHz 2.50

RAM: 1.50 GB GHz

Operating System: Windows | RAM: 4.00 GB
XP Professional Version 2002 | System Type:64-bit Operating
System

Operating System:Windows 7

RESULTS AND DATA ANALYSIS

This analysis compares the results obtained using the ordinary
MinMin against the result from the group method. In the
analysis; grp refersto Group, thrds refers to threads, Duo refers
to duocore and proc refers to processor. The comparison is
based mainly on improvement of the group method on the
ordinary MinMin which is computed in multiple as:

Improvement in multiple (X) =
The improvement in percent is computed as:
Improvement in percent (%) =

((Min Min-Group)/Group)*100 Equation 1

Performance of ordinary MinMin on the two computing
platforms. This section discusses result of the ordinary
MinMin (without the group method) on the single processor
and the duocore machines. This experiment is like most other
experiments where the sequential algorithm is executed on a
parale system. Table 6 shows the result and performance of
the ordinary MinMin on the single processor machine and the
duocore machine using two threads. The MinMin agorithm
recorded a total scheduling time of 1235755Ms on the single
processor machine and 220726 Ms on the duocore machine.
This represents a performance improvement of 5.6 times or
82% by the duocore system over the single processor system.
This improvement indicates that the MinMin algorithm is
scalable to some extent and gained from the parallelism in the
duocore system. the MinMin relied on the underlying hardware
for improved performance on the duocore, but this does not

represent the best performance of the MinMin on duocore as

the analysisin the next two sections show.

Table 4. Result and performance of MinMin on a single processor

machine and on a duocor e machine

MinMin2Thrds(| MinMin2Thrds
Jobs Limit SingleCPU) (Duocore)
1000 4500 690
2000 17672 2800
3000 40250 6410
4000 66922 10674
5000 90407 26432
6000 116922 19275
7000 154781 24914
8000 196768 32446
9000 244679 44057
10000 302854 53028
Total 1235755 220726
Average 123575.5 22072.6
Improvement over Single processor
system in multiples (X) 5.598593
Improvement over Single processor
system in percent (%) 82.13837

Performance of the ordinary MinMin on the duocore against
group method on the single processor machine: This analysis
compares the best ordinary MinMin result obtained on the
duocore machine against group method result on the single
processor machine. The result is shown in Table 7 which also
shows the formulas used in computing improvement while
Table 8 shows the computed improvement and average
improvements in multiples and percent. Using two groups and
one, two, and four threads; the ordinary MinMin on duocore
performed better than the group method on single processor by
4.37, 4.41, and 4.43 times or 77.13%, 77.32%, and 77.44%
respectively. Using four groups, and one, two or four threads,
the ordinary MinMin on duocore performed better than the
group method on single processor by 2.36, 2.39, and 2.38
times or 57.56%, 58.10%, and 57.93% respectively. While
using eight groups, there was an improvement of 1.53, 1.49,
and 1.51 times or 34.80%, 32.94%, and 34.1% by the MinMin
on duocore over the group method on the single processor.
Figure 1 and Figure 2 show the performance and aggregate
performance of the ordinary MinMin implemented on a
duocore machine over the grouping method executed on a
single processor machine. On average, there was an aggregate
improvement of 77.30%, 57.86% and 33.95% (or 4.40, 2.37
and 1.57 times) by the ordinary MinMin over the group
method-using two, four and eight groups respectively. The
ordinary MinMin performed better on the duocore machine
compared to the group method on a single processor system
because of the parallelism on the duocore and lack of support
for parallelism on the single processor machine. The trendline
fitted through the aggregate improvement graph yielded:

Y =-1.445x + 5.65......... Equation 2

The equation of the trendline indicates that even though the
ordinary MinMin on the duocore machine performed better
than the group method on the single processor machine, the
group method was improving as the number of groups
increases. The correlation (of 0.99) between the MinMin
values and the group method values indicates a strong
correlation and the R-sguared value of 0.9482 (on the
trendline) explains the reliability and repeatability of the
results using the method.

17740 International Journal of Current Research, Vol. 13, I ssue, 06, pp.17736-17744, June, 2021

Performance in Multiples(X)
15 :

‘,;' 10 e b= lmiprovemenl 4

] n Threads
'E 2 == Improvement 2

0 Threads
26ps AHps Bhrps == Improvement 1

Thread

Groups

Figure 1. Performance of MinMin on duocor e vs Group method
on asingle processor in multiples (X)

Aggregate Improvement

y= L4455+ 565
n:- 0943

2Grps 4aGrps 2Grps

Ve Toripance in Mullinles

Figure 2. Aggregate | mprovement of MinMin on Duocor e against
Group method on single processor

Analysis of Results on the Duocore Machine: This section
presents the results and analysis of the experiment executed on
the duocore machine. Table 9 shows the result and Table 10
shows the computation of improvement in multiples and in
percent. With two groups, the group method performed better
than the MinMin by 1.07 to 1.29 times or 6.8 to 22.26 percent.

Using four groups, the group method performed better than the
MinMin by 1.6 to 2.28 times representing 37.7 to 56 percent.
While using eight groups, the group method performed better
than the MinMin by 2.7 to approximately 4 .0 times which
represents 63 to 75 percent. The improvement graph in Figure
3 shows that as the number of groups increases on the duocore,
performance over the ordinary MinMin also increases. The
trendline fitted through the aggregate improvement graph in
Figure 4 yielded equation:

Y =1.175x-0.08 Equation 3

This indicates that the group method increases scheduling
efficiency on the duocore machine as the number of groups
increases. Thereis astrong correlation of 0.99 between pairs of
results and the R-sguared value of 0.97 on the trendline
indicates that the equation represents a good fit and the result
isreliable and repeatable.

Combination of results: This section shows the analysis
between the best result of the ordinary MinMin on the duocore
against the group method on the two platforms. Table 11 and
Table 12 show the combination of aggregate performance in
multiples and percent respectively, Figure 5 shows the total
scheduling time using MinMin on the two platforms, while
Figure 6 and Figure 7 show the combined aggregate
performance between the single processor system and the
duocore system.

Performance in Multiples(X)

15L.00
= 1000 _ e inpruvemenl in
3 o mlliples 4 Threads
E Lo ”
- == Improvement in
; multiples 2 Threads
[ARi] T T
2 Grps A BGps = Imp.'F)vcm-Cﬂr n
muitiples 1 1hread
Groups

Figure 1. Improvement over MinMin (X)

Aggregate Improvement

2aps 400 s Blargs

Figure 4. Aggregate perfor mance improvement on duocore

Total scheduling time [Msec)

HOO000

ANO000
wo (i ' - -3
ar =
a Tatal

MinlMin 2Grps 4Gr d@rps AGArps

Thuncore Single Mroressor Duncare

Figure5. Total scheduling time of MinMin and group
method on the two platfor ms

Aggregate Improvement (X)

— Agarogate Improvemeont

A4
356

20rps AGrps ACrps 20rps AGirps Rps

Single Processor Nuo-rare

Figure 2. Aggregate performance

Aggregate Improvementin Percent

LUPUREmMSs LOPUMGHs LOPUSGEms Ouolbrps Ouoldtrpe Ouoldinps

Single P orrsan s

Figure 7. Aggregate improvement in percent

17741 Goodhead T. Abraham and Evans, F, Osaisai, Parallel scheduling of grid jobs on duocore systems using grouping method
Table 7. Result from single processor system
No of jobs | Onethread Two threads
PropSpdRnd (Times Msec) PropSpdRnd (Times Msec)
MinMin 2Grps AGrps 8Grps MinMin 2Grps AGrps 8Grps
1000 452 2516 1062 547 403 2360 1094 594
2000 1924 7500 4110 2062 1775 7907 3876 2031
3000 4178 17265 7484 4406 4203 17031 9063 4360
4000 7118 27313 13453 7890 7431 28468 13656 9359
5000 10013 39406 20454 13516 9903 40453 22672 12985
6000 12825 57610 27937 21453 12984 59781 32578 19062
7000 16685 79407 42266 25218 16872 79499 42047 26234
8000 21633 94140 53375 37125 21956 94781 54172 34453
9000 27624 123121 66657 42843 27778 119609 67438 41250
10000 34406 150262 85688 54860 34570 157970 82423 55282
Total 136858 598540 322486 209920 137875 607859 329019 205610
Average 13685.8 59854 32248.6 20992 13787.5 60785.9 32901.9 20561
Four threads
PropSpdRnd (Times Msec)
MinMin 2Grps AGrps 8Crps))) Group Re sult
1000 399 2234 1047 562 (1) Performance improvement in multiple (X) = Minin Re st
2000 1795 9125 3969 2016
3000 4222 15922 8140 4296
4000 7188 28437 14906 8516
5000 9994 41250 20438 13406
6000 12700 60438 29188 19860
7000 16690 79031 41157 25125
8000 21719 95032 53329 35891
9000 27989 126173 66907 44157
10000 34122 148689 86110 53781
Tota 136818 606331 325191 207610 . Group Result—MinMinResult
Average | 136818 | 606331 | 325191 | 20761 | (@ Performance Improvement in percent (%) GroupResult x100
Table5. Perfor mance on the Single processor system
Spd Rnd
Performance in Percentage Performance in Multiples
Improvement 2Grps 4Grps 8Grps 2Grps 4Grps | 8Grps
1 1 Thread 77.13 57.56 34.8 4.37 2.36 153
2 2 Threads 77.32 58.10 32.94 441 2.39 1.49
3 4 Threads 7744 57.93 34.1 443 2.38 1.51
Average Improvement 77.30 57.86 33.95 4.40 2.37 151
Table 9. Result from Duo-core system
Number of Jobs One Thread Two Threads Four Threads
MinMin | SpdRnd MinMin | SpdRnd MinMin SpdRnd
2Grps 4Grps | 8Grps 2Grps 4Grps 8Grps MinMin 2Grps 4Grps 8Grps
1000 452 3% 277 106 403 375 319 95 399 447 232 126
2000 1924 1418 811 245 1775 1360 617 331 1795 1390 1971 447
3000 4178 2809 1544 720 4203 2628 1334 609 4222 2782 1926 1114
4000 7118 4766 2540 1232 7431 4665 2138 1575 7188 5209 3310 2232
5000 10013 6824 4035 | 1847 9903 7680 3832 2323 9994 8136 5626 3311
6000 12825 9963 5864 2944 12984 9607 5481 2927 12700 10064 7779 4729
7000 16685 13424 8039 | 4772 16872 14322 7888 4864 16690 14411 11354 | 6867
8000 21633 17362 10120 | 5567 21956 17156 9967 5672 21719 19857 14663 8138
9000 27624 22578 12738 | 7609 27778 22976 12796 | 7273 27989 27558 18172 | 11557
10000 34406 26853 15792 | 9590 34570 27406 15921 | 9080 34122 37564 20116 | 11039
Tota 136858 106391 61760 | 34632 137875 108175 60293 34749 136818 127418 85149 49560
Average 13685.8 | 10639.1 6176 | 34632 | 137875 | 108175 | 6029.3 | 34749 | 136818 12741.8 | 8514.9 | 4956
Table 10. Performance analysis on the Duo-cor e system
Speed Proportional and Randomly
Improvement in Percentage Improvement in Multiples
Improvement 2Grps | 4Grps | 8Grps 2Grps 4Grps 8Grps
1 | 1Thred 22.26 54.87 | 74.69 1.29 2.22 395
2 | 2Threads 21.54 56.27 | 74.80 1.27 2.29 397
3 | 4Threads 6.87 37.76 | 63.78 1.07 1.61 2.76
Average Improvement | 16.89 49.64 | 71.09 121 2.04 3.56

17742

International Journal of Current Research, Vol. 13, | ssue, 06, pp.17736-17744, June, 2021

Table 6. Combined | mprovement Analysisin multiples

Combined Improvement Analysisin Multiples
Single Processor Duo-core
2Grps 4Grps 8Grps 2Grps 4Grps 8Grps
1 Threads 4.37 2.36 1.53 1.29 2.22 3.95
2 Threads 4.41 2.39 1.49 1.27 2.29 397
4 Threads 4.43 2.38 1.52 1.07 161 2.76
Aggregate Improvement over MinMin 44 2.37 151 121 2.04 3.56
Table 7. Combined | mprovement Analysisin percentage
Combined Improvement Analysisin Percentage
Single Processor Duo-core
2Grps 4Grps 8Grps 2Grps 4Grps 8Grps
1 Threads 77.13 57.56 34.8 22.26 54.87 74.69
2 Threads 77.32 58.1 32.94 21.54 56.27 74.8
4 Threads 77.44 57.93 34.1 6.87 37.76 63.78
Aggregate Improvement | 77.3 57.86 33.95 16.89 49.64 71.09
On the single processor machine, the MinMin performed better CONCLUSION

than the group method by 4.4 times using two groups, 2.37
times using four groups and 1.51 times using eight groups. The
performance level decreased as the number of groups
increases, this is shown in the falling part of the graph labelled
single process 2 grpsto 8 grps in Figure 6 and the part labelled
Single processor in Figure 7. On the Duocore, the group
method performed better than the MinMin by 1.21, 2.04 and
3.56 times (or 16%, 49% and 71%) using two, four and eight
groups respectively. This caused the aggregate graph to rise
from duocore (two groups) to duocore (eight groups) in Figure
6 and Figure 7.

General Discussion on the results

There was a general performance improvement over the
ordinary MinMin using the group method. However, the group
method underperformed on the single processor machine, this
is because of the lack of parallelism support needed to execute
multiple scheduling instances within the groups. The ordinary
MinMin executed on a duocore performed better than the
group method executed on a single processor system, this
indicates that the MinMin agorithm is also scalable to some
extent while the group method is parallel-centric. On the duo-
core system, the group method performed better than the
ordinary MinMin, the performance over the MinMin increased
as the number of groups increases. Both the MinMin and group
method exploited the parallelism on the duocore but the group
method enhances paralelism far more than the MinMin,
ensuring a significant performance improvement over the
MinMin. Although, all the machines are not timed at the same
speed, it can be deduced that the grouping method expands the
realm of parallelism as scheduling throughput increases as the
number of groups increases. The correlation of 0.99 between
the sets of results indicates that the results are reliable and
repeatable. The R-squared value of 0.97 shows that the trend
generated by the result and analysis represents the best fit.

Recommendations

It has been proven severally that sequential algorithms do
not fully utilize the underlying hardware. To achieve better
performance, we recommend that grouping methods be
integrated with grid schedulers.

This work explored a job group and machine group method to
enhance parallelism in the scheduling of Grid jobs on a
duocore machine. The group methods improved performance
by 1.21 to 3.56 times (or by 16 to 71%). The improvement was
directly related to increasing groups. It has been proven that
sequential algorithms do not scale with multicore systems due
to performance-limiting sections. Multicore systems on the
other hand do not automatically guarantee optimal
performance with sequential agorithms. The dawn of the
multicore era, therefore, calls for a different approach to
programming models. To leverage the Grid for future goals
and benefit from improvements in hardware technology, we
propose the use of job and machine grouping methods for
increased performance.

Future thoughts: The experiments were conducted on a single
processor system and a duocore system and the pattern of
improvement was investigated. Though different factors
characterized the performance of a system, the overall result
cannot be standardized. It will be interesting to experiment on
a set of systems from the same family of CPU that shares same
features. This will help standardize the result. Haven recorded
significant improvement over the MinMin on a duocore
system, it will be interesting to test the efficacy of the group
method on computers with more cores (probably a quadcore)
and see the percentage of improvement; this will reveal if the
improvement pattern is continuous and by how much.

Acknowledgement

| acknowledge the Faculty of Engineering and Computing,
Coventry University, United Kingdom for award of research
grant in 2015.

REFERENCES

(1) Chervenak, A. |. Foster, C. Kesselman, C. and Salisbury,
and S. Tueke, “The data grid: Towards an architecture for
the distributed management and analysis of large scientific
datasets,” Journal of Network and Computer Applications,
vol. 23, no. 3, pp. 187-200, 2000, Accessed: Mar. 04,
2020. (Onling). Available: https://www.sciencedirect.com/
science/article/pii/S1084804500901103.

17743

Goodhead T. Abraham and Evans, F, Osaisai, Parallel scheduling of grid jobs on duocore systems using grouping method

(2) Klusacek, D. H. Rudova, R. Baraglia, M. Pasquali, and G.
Capannini, “Comparison Of Multi-Criteria Scheduling
Techniques,” in Grid Computing, Springer US, 2008, pp.
173-184.

(3) Moore, G. “Cramming more components onto integrated
circuits,” pp. 114-117, 1965.

(4 W. Knight, “Two heads are better than one (dual-core
processors),” |EE Review, vol. 51, no. 9, pp. 32-35, 2005,
Accessed: Mar. 05, 2020. (Online). Available:
https://digital-
library.theiet.org/content/journal§/10.1049/ir_20050903.

(5) Eck, D. J. “Introduction to Programming Using Java,”
2006. Accessed: Mar. 05, 2020. (Online). Available:
http://math.hws.edu/javanotes/. Thewebsitei ncludes.

(6) M. Kaku, “Tweaking Moores’s law: Computers of the post-
silicon era,” 2013, Accessed: Mar. 05, 2020. (Online).

(7) Gepner P. and Michal. F. Kowalik, “Multi-core processors:
New way to achieve high system performance,” in
International Symposium on Parallel Computing in
Electrical Engineering (PARELEC’06), 2006, pp. 9-13,
Accessed: Mar. 05, 2020. (Onling). Available:
https://ieeexplore.ieee.org/abstract/document/1698630/.

(8) Meyer, R. “Emerging Multi-core Realities,” Scientific
Computing, 2006, Accessed: Mar. 23, 2020. (Online).

(9) Lin,J. C.Yu, L. Wenlong, J. and Aamer, and T. Zhizhong,
“Understanding the memory behavior of emerging multi-
core workloads,” in 2009 International Symposium on
Parallel and Distributed Computing, 2009, pp. 153-160,
Accessed: Mar. 05, 2020. (Online). Available
https://ieeexplore.ieee.org/abstract/document/5284359/.

(10)Schauer, B. “Discovery Guides Multicore Processors-A
Necessity,” 2008. Accessed: Mar. 05, 2020. (Online).
Available: http://www.netrino.com/node/91.

(11)Zhuravlev, S. J. C. Saez, S. Blagodurov, A. Fedorova, and
M. Prieto, “Survey of scheduling techniques for addressing
shared in multicore processors,” ACM Reference Format,
vol. 45, no. 4, Nov. 2012, doi: 10.1145/2379776.2379780.

(12) Kesder, C. U. Dastgeer, and L. Li, “Optimized
Composition: Generating Efficient Code for Heterogeneous
Systems from Multi-Variant Components, Skeletons and
Containers,” Skeletons and Containers. arXiv preprint
arXiv, vol. 1405.2915, May 2014, Accessed: Mar. 06,
2020. (Online). Available: http://arxiv.org/abs/1405.2915.

(13)Amdahl, G. M. “Validity of the single processor approach
to achieving large scale computing capabilities,” in AFIPS
Conference Proceedings - 1967 Spring Joint Computer
Conference, AFIPS 1967, Apr. 1967, pp. 483-485, doi:
10.1145/1465482.1465560.

(14) Adams, J. C. D. J. Ernst, T. Murphy, and A. Ortiz,
“Multicore education: Pieces of the parallel puzzle,” in
SIGCSE’10 - Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, 2010, pp.
194-195, doi: 10.1145/1734263.1734329.

(15)Tendulkar, P. “Mapping and Scheduling on Multi-core
Processors using SMT Solvers,” 2014.

(16) Jin, H. D. Jespersen, P. Mehrotra, R. Biswas, L. Huang,
and B. Chapman, “High performance computing using MPI
and OpenMP on multi-core parallel systems,” Parallel
Computing, vol. 37, no. 9, pp. 562-575, 2011, doi:
10.1016/j.parco.2011.02.002.

(17) Asanovic K. et al., “A view of the parallel computing
landscape,” Communications of the ACM, vol. 52, no. 10,
pp. 56-67, Oct. 2009, doi: 10.1145/1562764.1562783.

(18) Chaiken R. et al., “SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets,” Proceedings of the

VLDB Endowment, vol. 1, no. 2, pp. 1265-1276, 2008,
Accessed: Mar. 06, 2020. (Onling). Available:
https://dl.acm.org/citation.cfm?id=1454166.

(19)Foster I. and Kesselman, C. “The Grid: Blueprint for a
new computing infrastructure.” San Francisco: Morgan
Kaufmann, 1999.

(20)Foster, 1. “Internet computing and the emerging grid,”
Nature web matters, vol. 7, 2000.

(21)Sgjedi H. and M. Rabiee, “A metaheuristic algorithm for
job scheduling in grid computing,” International Journal of
Modern Education and Computer Science, vol. 6, no. 5, p.
52, 2014.

(22)Béll, G. “Bell’s law for the birth and death of computer
classes: A theory of the computer’s evolution,” IEEE Solid-
Sate Circuits Society Newsletter, vol. 13, no. 4, pp. 8-19,
2008.

(23)Nesmachnow S. and M. Canabé, “GPU implementations
of scheduling heuristics for heterogeneous computing
environments.”

(24)Pinel, F. B. Dorronsoro, and P. Bouvry, “Solving very
large instances of the scheduling of independent tasks
problem on the GPU,” Journal of Parallel and Distributed
Computing, vol. 73, no. 1, pp. 101-110, 2012, doi:
10.1016/j.jpdc.2012.02.018.

(25)Xiao, M. L. Ding, S. Zhao, and W. Li, “Semi-online
Algorithms for Hierarchical Scheduling on Three Parallel
Machines with a Buffer Size of 1,” in Communications in
Computer and Information Science, Nov. 2021, vol. 1352
CCIS, pp. 47-56, doi: 10.1007/978-981-16-1877-2_4.

(26)Hernandez-Lopez, F. J. R. Legarda-S&enz, and C. Brito-
Loeza, “Parallel algorithm for fringe pattern
demodulation,” Journal of Real-Time Image Processing,
pp. 1-11, Jun. 2021, doi: 10.1007/s11554-021-01129-4.

(27)Abbasi S. 1. and S. Kamal, “Affinity Based Scheduling
Using Bayesian Model and Load Balancing in Multicore
Systems,” in 2021 International Conference on Digital
Futures and Transformative Technologies (ICoDT2), May
2021, pp. 1-7, doi: 10.1109/1CoDT252288.2021.9441513.

(28)Qusterhout, J. “Scheduling Techniques for Concurrent
Systems,” ICDCS, vol. 82, pp. 22-30, 1982.

(29)Buyya, R. S. Date, Y. Mizuno-Matsumoto, S. Venugopal,
and D. Abramson, “Neuroscience instrumentation and
distributed analysis of brain activity dataz A case for
eScience on global Grids,” Concurrency Computation
Practice and Experience, vol. 17, no. 15, pp. 1783-1798,
Dec. 2005, doi: 10.1002/cpe.888.

(30)Soni, V. K. R. and Sharma, and K. Mishra, Manoj,
Grouping-based job scheduling model in grid computing,
vol. 41. 2010.

(31) Silva, L. “Computing data cubes over GPU clusters.,”
2018, Accessed: Mar. 04, 2020. (Online). Available:
https://www.monografias.ufop.br/handle/35400000/1527.

(32)Bin, R. E. N. S. Baakrishna, Y. Jo, S. Krishnamoorthy,
K. Agrawal, and M. Kulkarni, “Extracting SIMD
parallelism from recursive task-parallel programs,” ACM
Transactions on Parallel Computing, vol. 6, no. 4, pp. 1-
37, Dec. 2019, doi: 10.1145/3365663.

(33)Nemmich, M. A. F. Debbat, and M. Slimane, “(on-line)
©IBERAMIA and the authors An Enhanced Discrete Bees
Algorithms for Resource Constrained Optimization
Problems,” Inteligencia Artificial, vol. 22, no. 64, pp. 123~
134, 2019, doi: 10.4114/intartf.vol 22iss64pp123-134.

(34Roy, S. K. R. Devargj, A. Sarkar, K. Mgji, and S. Sinha,
“Contention-aware optimal scheduling of rea-time
precedence-constrained task graphs on heterogeneous

17744

International Journal of Current Research, Vol. 13, | ssue, 06, pp.17736-17744, June, 2021

distributed systems,” Journal of Systems Architecture, vol.
105, p. 101706, May 2020, doi:
10.1016/j.sysarc.2019.101706.

(35)M. M. Javanmard, Z. Ahmad, M. Kong, L.-N. Pouchet, R.
Chowdhury, and R. Harrison, “Deriving parametric multi-
way recursive divide-and-conquer dynamic programming
algorithms using polyhedral compilers,” in Proceedings of
the 18th ACM/IEEE International Symposium on Code
Generation and Optimization, Feb. 2020, pp. 317-329, doi:
10.1145/3368826.3377916.

(36)Q. Tang, L.-H. Zhu, J. Lian, L. Zhou, and J.-B. Wei, “An
efficient multi-functional duplication-based scheduling
framework for multiprocessor systems,” The Journal of

Supercomputing, pp. 1-26, Feb. 2020, doi:
10.1007/s11227-020-03208-y.

(37)G. T. Abraham, A. and James, and N. Yaacob, “Priority-
grouping method for parallel multi-scheduling in Grid,”
Journal of Computer and System Sciences, vol. 81, no. 6,
pp. 943-957, 2015, doi: 10.1016/j.jcss.2014.12.009.

(38)G. T. Abraham, A. and James, and N. Yaacob, “Group-
based Parallel Multi-scheduler for Grid computing,” Future

Generation Computer Systems, vol. 50, pp. 140-153, 2015,
doi: 10.1016/j.future.2015.01.012.

(39) Abraham, G. T. “Group-based parallel multi-scheduling
methods for grid computing,” Coventry University, 2016.
(40) losup A. et al., “The Grid Workloads Archive,” Future

Generation Computer Systems, vol. 24, pp. 672-686, 2008,
doi: 10.1016/j.future.2008.02.003.

kkkkkk*k

