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INTRODUCTION  
 
In (7) C. Berge introduced the theory of Multifunctions. A multifunctions is a set
has applications in functional analysis and fixed point theory. In 1970, Levine introduced the concepts of generalized closed
and discussed the properties of sets , closed and open maps, normal and separation axioms. Later in 1986 D. Andrijevic 
new type of generalized closed sets in topological space called semi pre open sets. In 1995, on generalizing semi pre open se

introduced by J. Doncthev. Dunham (9) introduced the concept of the closure operator 

�∗={G:��∗(��)= ��} and studied some of their properties. Pushpalatha 

sets, Eswaran and Pushpalatha (11) introduced and studied. 

and studied various function in topological spaces. For a multifunction F: X 

a set G of Y by (G) and (G), respectively, that is 
multifunction F : X → Y , the graph multifunction 
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ABSTRACT  

In this paper, we introduce the concept of   τ∗-generalized � continuous

spaces and study some of their properties where τ∗ is defined by τ∗
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C. Berge introduced the theory of Multifunctions. A multifunctions is a set-valued function. The concept of multifunctions 
has applications in functional analysis and fixed point theory. In 1970, Levine introduced the concepts of generalized closed

d discussed the properties of sets , closed and open maps, normal and separation axioms. Later in 1986 D. Andrijevic 
new type of generalized closed sets in topological space called semi pre open sets. In 1995, on generalizing semi pre open se

introduced the concept of the closure operator  and a new topology 

and studied some of their properties. Pushpalatha et al., (11) introduced and studied. 

introduced and studied. -generalized continuous functions. Several authors have introduced 

and studied various function in topological spaces. For a multifunction F: X  Y, we shall denote the upper a

(G), respectively, that is ��(G)={� ∈ X:F(�)⊂G} and ��(G)={
, the graph multifunction GF : X → X × Y is defined as follows: GF (x) = 

A subset A of a topological space X is called �-open (1) (or) semi pre open if  A⊂

A subset A of a topological space X is called �-closed (or) semi pre closed if int(��
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valued function. The concept of multifunctions 
has applications in functional analysis and fixed point theory. In 1970, Levine introduced the concepts of generalized closed set 

d discussed the properties of sets , closed and open maps, normal and separation axioms. Later in 1986 D. Andrijevic (2) gave a 
new type of generalized closed sets in topological space called semi pre open sets. In 1995, on generalizing semi pre open set is 

and a new topology  where = 

introduced and studied. -generalized closed 

generalized continuous functions. Several authors have introduced 

Y, we shall denote the upper and lower inverse of 

(G)={� ∈ X:F(�)∩G≠ ∅}.. For a 
) = {x} × F (x) for every x ∈ X. 

��(int(�� (A))).(2) 

�� (int(A)))⊆ �.(2) 
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Definition: 2.3 A subset A of a topological space X is called a generalized �-closed (briefly, g � closed) if ���(A) ⊆G whenever 
A⊆G and G is open in �.(8) 
 
Definition: 2.4 For the subset A of a topological space X, the generalized closure operator  ��∗ is defined by the intersection of all 
g-closed sets containing �. (9) 
 
Definition: 2.5 For the subset A of a topological space X, the topology �∗ is defined by  �∗={G:��∗(��)= ��}. (9) 
 
Definition: 2.6 A subsets E of a topological space (X,�∗)is called �∗-generalized � closed set if  ��∗[(int(cl(int(E)))] 
⊆W(briefly,  ��∗[(int(cl(int(E)))] denoted by ���

∗ (E)) whenever E⊆W and W is �∗ open in X. The complement of �∗-generalized � 

closed set is called the �∗-generalized � open set. (4) 
 
Lemma: 2.7  
 

For a multifunction F: X→Y , the following hold: 

 
( i )  G+(A × B) = A ∩ F +(B) and  
(ii) G−(A × B) = A ∩ F−(B) for any subsets A ⊂ X and B ⊂ Y. (15) 
 
 
Definition: 2.8: A subset A of a topological space X is nowhere dense if, for every nonempty open U�X, the 
intersection U∩A is not dense in U. Common equivalent definitions are: 
 
(i) For every nonempty open set U⊂X, the interior of U∖A is not empty. 
(ii) The closure of A has empty interior. 
(iii) The complement of the closure of A is dense.(3) 
 

Definition: 2.9: A function f : X Y from a topological space X into a topological space Y is called semi pre continuous if the 
inverse image of an open set in Y is semipreopen in X.(1) 
 

Definition: 2.10: A function f : X  Y from a topological space X into a topological space Y is called g-continuous if the inverse 
image of a closed set in Y is g-closed in X.(5) 
 

Definition: 2.11: A function f : X  Y from a topological space X into a topological space Y is called generalized semi pre-
continuous (briefly gsp-continuous) if the inverse image of a closed set in Y is gsp-closed in X. (8) 
 
Definition: 2.12 A function f : X → Y from a topological space X into a topological space Y is called �∗-g continuous if the 
inverse image of a g-closed set in Y is �∗-gclosed in �. (11) 
 
Definition: 2.13  A function f : X → Y from a topological space X into a topological space Y is called �∗-generalized � continuous 
function (briefly �∗-g� continuous) if the inverse image of every g� open set in Y is �∗-g open in X. 
 
Definition: 2.14: A subset A of a topological space X is said to be  
 
(i)α-paracompact if every cover of A by open sets of X is refined by a cover of A which consists of open sets of X and is locally 
finite in X; (18) 
 

(ii) α-regular if for each a ∈ A and each open set U of X containing a there exists an open set G of x such  

that a ∈ G ⊂ Cl (G) ⊂ U. (13) 

 
Definition: 2.15: A rare set is a set S such that ���(�) = ∅, and a dense set is a set S such that cl(S)=X. (14) 
 

Definition: 2.16 A multifunction F : X → Y is said to be upper rarely continuous at a point x of X if for each open set G of Y 
containing F (x), there exists a rare set RG with Cl(RG) ∩G = ∅ and an open set U containing x such that F(U) ⊂ G⋃RG. A 
multifunction is said to be upper rarely continuous if it has the property at each point of   X. (16) 

  
ON -GENERALIZED CONTINUOUS MULTIFUNCTIONS 

 
 upper �∗-generalized β-continuous (briefly u. �∗-g.β.c.) at a point x∈X if for each open set V containing F (�), there exists 
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U ∈ �∗-g β(X, x) such that F(U )⊂ V ; 
 lower �∗-generalized β-continuous (briefly l. �∗-g.β.c.) at a point x∈X if for each open set V such that F (x) ∩V ≠ ∅ there 

exists U ∈ �∗-g β (X, x) such that U ⊂ F−(V ); 
 upper (lower) �∗-g β -continuous if F has this property at every point of X. 
 

Theorem: 3.2 : The following are equivalent for a multifunction F: (X, ) ( Y, : 
 
 F is upper �∗-g β -continuous at a point x ∈X; 
 for each open neighborhood U of x and each open set V of Y with x ∈X F +(V ), F +(V ) ∩ U is not nowhere dense;  
 for each open neighborhood U  of x and each open set V  of  � with x ∈ X F +(V ), there exists an open set G  of X  such that 

∅ ≠ G ⊂ U  and G ⊂Cl(F +(V ));   
 for each open set V of  Y with x∈ F +(V ), there  exists U  ∈  �∗-gsO(X, x) such that U⊂ cl(F +(V )); 
 x ∈ Cl (int (Cl(F +(V )))) for every open set V of Y with x ∈ F +(V ). 
 

Proof:  

 
(i) ⇒  (ii) and (ii) ⇒ (iii): The proofs are obvious . 

(iii)⇒  (iv): Let V  be an open set of Y containing F (x). By U (x) we denote the family of all open neighbourhoods of x. For each 

U ∈ U (x), there exists an open set GU of X such that GU ⊂ U  ≠ ∅ and GU ⊂ Cl(F +(V )). Put W = ∪{GU :  U  ∈ U (x)}.  Then W   is 

an open set of X, x ∈ Cl (W) and W⊂ Cl(F +(V )). Then, we put Uo = W ∪ {x}. Then W ⊂ Uo ⊂ Cl(W) and Uo∈  �∗-gsO(X, x)  and 

also Uo ⊂ Cl (F +(V )). 

(iv)⇒  (v):  Let V  be an open set of Y  containing F (x). There exists  U ∈  �∗-gsO(X, x)  such that U ⊂ Cl(F +(V )).  So, we have 
x ∈ U ⊂Cl(int(U )) ⊂ Cl(int(Cl(F +(V )))). 

Theorem: 3.3: The following are equivalent for a multifunction F: (X, ) ( Y, : 
 
(i) F is lower �∗-g β -continuous at a point x ∈ X; 
(ii) for any open neighborhood U of x and any open set V of Y with x ∈ F−(V ), F−(V ) ∩ U is not nowhere dense; 
(iii) for any open neighborhood U of x and any open set V of Y with � ∈F−(V), there exists an open set G of X such that             
G⊂ U≠ ∅ and G⊂ cl(F−(V )); 
(iv) for any open set V of Y with x∈ F−(V), there exists U∈ �∗-gsO(X, x) such that U⊂ cl (F−(V )); 
(v) x ∈ cl(int(cl(F−(V )))) for every open set V of Y with x ∈ F−(V ). 

Proof:  

The proof is similar to the theorem 3.2. 

 Theorem: 3.4 The following are equivalent for a multifunction F: (X,�∗)→( Y,�): 

 F is upper �∗-g β -continuous; 
 F +(V )∈ �∗-g β(X) for every open set V of     Y ; 
 F−(K) is �∗-g β closed in X for every closed set K of Y ; 
 �∗-g βcl(F−(B))⊂ F−(cl(B)) for every subset B of   Y ; 
 int(cl(int(F−(B)))) ⊂ F−(Cl(B)) for every subset B of Y . 

Proof:  

(i) ⇒ (ii): Let V be any open set of Y and x ∈ F +(V). There exists U ∈ �∗-g β(X, x) such that F (U)⊂ V. Here, we obtain x ∈ 
U⊂ Cl int(Cl(U )))⊂ Cl (int(Cl(F +(V)))). Then F +(V)⊂ Cl (int(Cl (F +(V )))) and hence F +(V ) ∈ �∗-g β(X). 
(ii)⇒ (iii): In fact that F +(Y \ B) = X \ F−(B) for every subset B of Y . 
(iii)⇒ (iv): For any subset B of Y, Cl(B) is closed in Y and F−(Cl(B)) is �∗-g β closed in X. Here, we obtain  �∗-g βCl(F−(B))⊂ 
F−(B). 
(iv)⇒ (v): Let B be any subset of Y . Then int(Cl(int(F−(B)))) ⊂ �∗-g βCl(F−(B)) ⊂ F−(Cl(B)). 
(v)⇒ (ii): Let V be any open set of  . Then Y \ V is closed in Y and we have X \ F +(V ) = F−(Y \ V ) ⊃ int(Cl(int(F−(Y \ V )))) = 
int(Cl(int(X \ F +(V )))) = X \ Cl(int(F +(V )))). Then  F +(V ) ⊂  Cl(int(Cl(F +(V )))) and hence F +(V ) ∈ �∗-g β(V ). 
(ii) ⇒ (i): Let x ∈ X and V be an open set of Y containing F (x). By (ii), we have x ∈ F +(V ) ∈ �∗-g β(X). Put U = F +(V ). Then we 
obtain U ∈ �∗-g β (X, x) and F (U) ⊂ V . Hence F is upper �∗-g β continuous.  
 
 
Theorem: 3.5 The following are equivalent for a multifunction F: (X,�∗)→( Y,�): 
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− 

(i) F is lower �∗-g β -continuous; 
(ii) F−(V ) ∈  �∗-g β(X) for every open set V of Y ; 
(iii) F +(K) is �∗-g β closed in X for every closed set K of Y ; 
(iv)  �∗-g βcl(F +(B)) ⊂ F +(cl(B)) for every subset B of Y ; 
(v) int(cl(int(F+(B)))) ⊂ F+(cl(B)) for every subset B of Y .  
(vi)  F (int(cl(int(A)))) ⊂ cl(F (A)) for every subset A of X; 
(vii) F ( �∗-g βcl(A)) ⊂ cl(F (A)) for every subset A of X. 
 
Proof: 
 

(�) ⇒ (ii): Let V be any open set of Y and x ∈ ��(V). There exists U ∈  �∗-g β (X, x) such that F(U)∩V≠ ∅. Then x ∈ U ⊂ 
Cl(int(Cl(U)))⊂ Cl(int(Cl(��(V)))). Then F-(V)⊂ Cl (int(Cl (F -(V )))) and hence ��(V )∈  �∗-g β (X). 
(ii)⇒ (iii): I n  fact that F -(Y \ B) = X \ ��(B) for every subset B of Y . 
(iii)⇒ (iv): For any subset B of Y, Cl (B) is closed in Y and F+(Cl(B)) is �∗-g β closed in X. So that �∗-g βCl (��(B)) ⊂ ��(B). 
(iv)⇒ (v): Let B be any subset of Y. Then int(Cl(int(��(B)))) ⊂ �∗-g βCl(��(B)) ⊂ ��(Cl(B)). 
(v)⇒(vi):  Let A be any subset of X. Then we have int(Cl(int(A)))⊂int(Cl(int(��(F(A))))) ⊂ ��(Cl(F(A))). So that F 
(int(Cl(int(A))))⊂ Cl(F (A)) . 
(vi)⇒(vii): Let A be any subset of X. We have F (�∗-g βCl(A)) = F(A∪int(Cl(int(A)))) = F(A)∪F(int(Cl(int(A))))⊂(F(A)). 
(vii)⇒(iii): Let K be any closed set of Y. Then we have F(�∗-g βCl (F+(K)))⊂Cl(F(�� (K)))⊂Cl(K) = K. Hence, �∗-g βCl 
(��(K)) ⊂ ��(K), and hence ��(K) is β-closed in X.  

 
 
Theorem: 3.6 
 

Let F: (X,�∗)→( Y,�) be a multifunction such that F (x) is compact for each x ∈ X. Then F is upper �∗-g β continuous if and only if 
GF : X → X × Y is upper �∗-g β continuous.  
 
Proof:  
 

Suppose that F: (X,�∗)→( Y,�)is upper �∗-g β continuous .  Let x ∈ X  and W  be any open set of X × Y containing GF (X). For 
each y ∈ F (x), there exist open sets U (y) ⊂ X and V (y) ⊂ Y such that (x, y) ∈U (y) ×V (y) ⊂ W . The family {V (y) : y ∈ F (x)} is an 
open cover of F (x), and F(x) is compact. Therefore, there exist a finite number of points y1,  y2, . . . ,  yn  in F (x) such that F 
(x)⊂∪{V (yi) : 1 ≤ i ≤ n}. Set U  = ∩{U (yi) : 1 ≤ i ≤ n} and V = ∪{V (yi) : 1 ≤ i ≤ n}. Then U and V are open in X and Y, 
respectively, and {x} × F (x) ⊂ U × V⊂ W . Since F is upper �∗-g β continuous, there exists Uo∈ �∗-g β(X, x) such that F (Uo) ⊂ U. 
By Lemma  2.7(i), we have U ∩Uo⊂ U ∩F +(V ) = G+(U ×V ) ⊂ G+(W ). So that U ∩ Uo =�∗-g β(X, x) and GF (U ∩ Uo) ⊂ W . Then 
GF is upper �∗-g β continuous. Conversely assume that GF : X → X × Y is upper �∗-g β continuous. . Let x ∈ X and V be any 
open set of Y containing F (x). Since X × V is open in X × Y and GF (x) ⊂ X × V, there exists U∈ �∗-g β(X, x) such that GF (U ) ⊂ 
X ×V . By Lemma 2.7(i), we have U⊂ G+(X × V) = F +(V ) and F (U ) ⊂ V. Hence F is upper �∗-g β continuous. 
 
Theorem: 3.7  
 
A multifunction F: (X,�∗)→( Y,�)is lower �∗-g β continuous if and only if GF : X →X × Y is lower �∗-g β continuous . 
− 

Proof:  

Suppose that F is lower �∗-g β continuous . Let x ∈ X  and W  be any open set of X × Y such that x ∈ GF (W ). Since W ∩ ({x} ×F 
(x))  ≠ ∅ , there exists y ∈ F (x) such that (x, y) ∈ W , and hence (x, y) ∈ U × V⊂ W for some open sets U ⊂ X and V ⊂ Y . Since        
F (x) ∩ V ≠ ∅, there exists G ∈ �∗- g β(X, x) such that G ⊂ F−(V ). By Lemma 2.7(ii), we have U ∩G ⊂ U ∩F−(V ) = GF (U ×V ) ⊂ 

GF (W). Moreover, x ∈U ∩ G ⊂ �∗-g β(X) and hence GF is lower �∗-g β continuous. 

 
Assume that GF is lower �∗-g β continuous. Let x ∈ X and V be an open set of Y such that    x ∈ F−(V ). Then X × V is open in X 
×Y and GF (x) ∩ (X × V ) = ({x} × F (x)) ∩ (X × V ) = {x} × (F (x) ∩ V ) ≠ ∅. Since GF is �∗-g β continuous, there exists U∈ �∗-g 
β(X, x) 
 
Lemma: 3.8  
 
If A is an α-regular α-paracompact set of a topological space X and U is an open neighborhood of A, then there exists an open set 
G of X such that A ⊂ G⊂ cl(G)⊂ U.(13)  
 

For a multifunction F : X →Y , by clF :X →Y  we denote a multifunction defined as follows: (clF)(x) = cl(F(x)) for each x∈ X. 
Similarly, we can define βclF : X→ Y , sclF : X → Y , pclF : X → Y or  α clF: X → Y. (6) 
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Lemma: 3.9  
  

If  F: (X,�∗)→( Y,�) is a multifunction such that F (x) is α-paracompact α-regular for each x∈X, then for each open set V of Y , 
G+(V ) = F +(V), where G denotes βclF, sclF, pclF, αclF or  clF. 

 

Proof: Let V be any open set of Y . Let x  G+(V ). Then G(x)⊂ V and F (x)⊂ G(x) ⊂ V . We have x  F+(V ), and hence G+(V )⊂ 

F+(V). Conversely, let x  F +(V ), then F (x) ⊂ V . By Lemma 3.8, there exists an open set H of Y such that F (x) ⊂ H ⊂ cl(H) ⊂ 

V; hence G(x) ⊂ cl(H) ⊂ V . Then, we have x G+(V ) and F +(V ) ⊂ G+(V ).  
 
Theorem: 3.10 
 
Let   F: (X,�∗)→( Y,�) be a multifunction such that F (x) is α- paracompact and α-regular for each  x ∈ X. Then the following are 
equivalent: 
 
(i) F is upper �∗-g β continuous ; 
(ii) βclF is upper �∗-g β continuous ; 
(iii) sclF is upper �∗-g β continuous ; 
(iv) pclF is upper �∗-g β continuous ;  
(v) clF is upper �∗-g β continuous; 
(vi) αclF is upper �∗-g β continuous. 
 

By  Lemma 3.9, we put G = βcl F, scl F, pcl F, or clF. Suppose that F is upper �∗-g β continuous . Let x∈ X and V be any open 
set of Y containing G(x). By Lemma 3.9, x∈ G+(V ) = F +(V ) and there exists U∈ �∗-g β(X, x) such that F (U )⊂ V . Since F (u) is 
α-paracompact and α-regular for each u∈ U , by Lemma 3.9, there exists an open set H such that F(u) ⊂ H ⊂ cl(H) ⊂ V ; 
hence G(u) ⊂ cl(H) ⊂ V  for each u ∈ U . So that  G(U) ⊂ V . Hence G is upper �∗-g β continuous. Conversely, suppose that G 
is upper �∗-g β continuous . Let x ∈X and V be any open set of Y containing F (x). By Lemma 3.9, x ∈ F +(V ) = G+(V ) and hence 
G(x) ⊂ V . There exists U ∈ �∗-g β(X, x) such that G(U ) ⊂ V . Thus U ⊂ G+(V ) = F +(V ), and hence F (U ) ⊂ V . So that F is 
upper �∗-g β continuous. 
 
Lemma: 3.11:  If F:(X,�∗)→( Y,�) is a multifunction, then for each open set V of Y , G−(V) =  F−(V), where G denotes  βclF,  
sclF,  pclF , �clF or clF. 

 

Proof:  Let V be any open set of Y and x ∈G−(V ). Then G(x) ∩ V ≠ ∅, and hence F(x)∩V≠ ∅.  �ince V  is open.  Thus, x ∈  F−(V) 
and hence G−(V)⊂ F−(V) .   Conversely, assume that x ∈ F− (V). Then we have  ∅ ≠  =F(x) ∩V ⊂ G(x) ∩V and hence x ∈ G−(V). 
Thus, we have F−(V)⊂ G−(V). Then G−(V ) = F−(V). 
 
 
Theorem: 3.12  
 

Let   F: (X,�∗)→( Y,�) be a multifunction then the following are equivalent: 

(i) F is lower �∗-g β continuous ; 

(ii) βclF is lower �∗-g β continuous ; 

(iii) sclF is lower �∗-g β continuous ; 

(iv) pclF is lower �∗-g β continuous ;  

(v) clF is lower �∗-g β continuous ; 
 
Theorem: 3.13: Let F: (X,�∗)→( Y,�) be a multifunction and {�⋋:⋋∈ ∆} be an open cover of X. If the restriction functions F/�⋋ 
is upper �∗-g β continuous for each ⋋∈ ∆, then  F  is upper  �∗-g β continuous. 
 
 
Proof: Let V be any open subset of Y. Since F/�⋋ is upper �∗-g β continuous for each ⋋∈ ∆, hence F/�⋋

+(V)=�⋋ ∩ F+(V) is �∗-
g β open set. Then⋃ (�⋋⋋∈∆ ) ∩ F+(V) =X ∩ F+(V)= F+(V) is  �∗-g β  open set. Hence F is upper �∗-g β continuous. 
 
Theorem: 3.14 If F: (X,�∗)→( Y,�) is upper �∗-g β continuous and F(X) is a subspace of Y, then F:X→F(X) is upper �∗-g β 
continuous. 
 
Proof: Since F: (X,�∗)→( Y,�) is upper �∗-g β continuous, for every open subset V of Y ,F+(V∩F(X))=F+(V)∩F+F(X)=F+(V) 
is �∗-g β open. Hence F:X→F(X) is upper �∗-g β continuous. 
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Theorem: 3.15 
 
If F: (X,�∗)→( Y,�) is lower �∗-g β continuous and F(X) is a subspace of Y, then F:X→F(X) is lower �∗-g β continuous. 

 
Proof: Since F: (X,�∗)→( Y,�) is lower �∗-g β continuous, for every open subset V of Y, ��(V∩F(X))= ��(V)∩
 ��F(X)= ��(V) is �∗-g β open. Hence F: X →F(X) is lower �∗-g β continuous. 

 
SOME PROPERTIES 
 
Theorem 4.1: A multifunction F: (X,�∗)→( Y,�) is upper �∗-generalized rarely continuous at each point x ∈ X and for each 
open set G containing F (x), F−(Cl(�∗-gRG)) is a β-closed set of  X, where �∗-gRG is the rare set, then F is upper �∗-g β 
continuous. 

 
Proof: Let x ∈X and G  be an open set such that F (x) ⊂ G.  Since F is upper �∗-g rarely continuous, there exist an open set 
V of X containing x and a �∗-g rare set �∗-gRG with cl(�∗-gRG)∩G = ∅ such that F (V )⊂G ⋃ �∗-gRG. Let U = V ⋂ (X \ F−( 
cl(�∗-gRG))). Then we have U ∈ �∗-g β(X) and x ∈ U, since x ∈ V and x ∈ X \ F−(cl(�∗-gRG)). We have suppose that x ∈ F−( 
cl(�∗-gRG)) then F (x) ∩ cl(�∗-gRG) ≠ ∅, G∩ cl(�∗-gRG) = ∅. Let  � ∈   U . Then F (s) ⊂G ⋃ (�∗-gRG) and F (s) ⋂ cl(�∗-gRG) = ∅. 
Then, we have, F(s) �∗-gRG =∅, then hence F (s)⊂G. Since U is a �∗-g β -open set containing x, then F is upper �∗-g β 
continuous. 

 
Definition 4.2 A multifunction F: (X,�∗)→( Y,�)  is said to be upper �∗-gα continuous if for each � ∈ X and each open set 
V of Y containing F (�), there exists an �∗-gα open set U containing � such that � (�) ⊂ �.  

 
Theorem 4.3  If F, G : (X,�∗)→( Y,�) are multifunctions and Y is a normal space such that 
 
(i) F and G are punctually closed; 
(ii) F is upper �∗-g β continuous; 
(iii)  G is upper �∗-gα continuous, then the set {� ∈ X : F (�) ∩ G(�) ≠ ∅} is �∗-g β closed in �. 

 

Proof: Put A  = {x ∈ X : F (x) ∩ G(x) ≠ ∅} and let x ∈  X \ A.  Then  F (x) ∩ G(x) = ∅. Since Y  is normal, there exist disjoint 
open sets V  and  W such that F (x) ⊂ V and G(x) ⊂ W . Since F is upper �∗-g β continuous, there exists U1 ∈ �∗-g β(X, x) such 
that F (U1) ⊂V. Since G is upper �∗-gα continuous, there exists an �∗-gα open set U2 containing x such that G (U2) ⊂ W.  Put U = 
U1 ∩ U2. Then U ∈ �∗-g β(X, x) and  F(U) ∩ G(U ) = ∅. So that U ∩ A = ∅ and hence A is �∗-g β-closed in X.  

 

Definition: 4.4: The �∗-g β-frontier of a subset A of X, denoted by �∗-g βFr(A), is defined by �∗-g βFr(A) = �∗-g βcl(A) ∩ 
�∗-g βcl(X \ A) = �∗-g βCl(A) −�∗- g βint(A). 

 
Theorem: 4.5: The set of all points x of X at which is a multifunction F: (X,�∗)→( Y,�) is not upper  �∗- g β continuous 
is identical with the union of �∗-g β frontier of the upper  inverse  images  of  open   sets  containing F (x).  

 

Proof: Let x be a point of X at which F is not upper �∗-g β continuous. Then there exists an open set V of Y  containing F (x) 
such that U ∩(X∖F +(V )) ≠ ∅  for every U ∈ �∗-g β(X, x). Therefore, x ∈ �∗-g βCl(X ∖ F +(V )) = X∖ �∗-g βint(F+(V )) and  x 
∈ F+(V). Then, x ∈ �∗-g βFr(F+(V)). Conversely, suppose that V is an open set containing F (x) and that x∈ �∗-g βFr(F +(V )). If  F 
is upper �∗-g β continuous at x, then there exists U ∈ �∗-g β(X, x) such that U⊂F +(V ); hence x ∈ �∗-g β int(F +(V )). Which is a 
contradiction, hence F  is not upper �∗-g β continuous at x.  

 
Theorem: 4.6: The set of all points x of X at which is a multifunction F: (X,�∗)→( Y,�) is not lower  �∗- g β continuous 
is identical with the union of �∗-g β frontier of the lower inverse  images  of  open  sets  containing  F(x).  

 

Proof:  Let x be a point of X at which F is not lower  �∗-g β continuous. Then there exists an open set V of Y containing F (x) 
such that U ∩(X∖ ��(V)) ≠ ∅  for every U ∈ �∗-g β(X, x). Therefore, we have x ∈ �∗-g βCl(X∖ ��(V)) = X∖ �∗-g βint(F -(V )) 
and x∈ F -(V ). Then, x ∈ �∗-g βFr(��(V)). Conversely, suppose that V is an open set containing F (x) and that x ∈ �∗-g 
βFr(��(V )). If F is lower �∗-g β continuous, at x, then there exists U ∈ �∗-g β(X, x) such that  U⊂ ��(V ); hence x ∈ �∗-g β 
int(��(V )). Which is a contradiction, hence F is not lower �∗-g β continuous at x.  
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