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INTRODUCTION 
 
Nanotechnology is the sprightly growing area of research 
its massive potential for a wide variety of applications
structures are classified into four categories namely: 1D, zero
and 3D structures. These structures are having their own importance 
but one-dimensional (1D) nanostructures have gained substantial 
interest because of their aberrant properties such as Physical, 
electronics, especially on Nano scale systems. 1D
very important feature device function, in different kinds of nano 
devices (2-4). There has been remarkable breakthrough in 1D
nanostructures with molecular scale and nano scale properties that can 
meet the demands of society in the modern era. Some examples are 
carbon nanotubes, inorganic semiconducting etc 
structures have many diverse applications in variegated areas such as 
nano electronics or molecular electronics, biotechnology, 
composite material, medicine, nano devices. (5
materials possess distinctive properties due to which they have 
attained special place and can be used as electrical as well as 
conducting material, used for doping process both 
and dedoping. Polymers such as polyacetylene
(PANI), polyfuran (PF), poly (p-phenylene-vinylene
(3,4-ethylene dioxythiophene) (PEDOT),  and other polythiophene
(PTh) derivatives, etc., have drawn special attention in the field of 
nanoscience and nanotechnology because of their These controllable 
chemical and electrochemical properties and easy processability.
15). Different physical and chemical processes have been embraced 
for the preparation of conducting polymer (CP
nanowires, like electrospinning, template-free method,, hard physical 
template-guided synthesis and soft chemical template synthe
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ABSTRACT 

Conducting polymers (CPs) are very important for the researchers because of their importance in in 
various fields such as economic, environmental and electrical conductivity. These polymers have very 
important properties such as Optical, mechanical, and electronics. Conducting Polymers shows widest 
range of applications: such as electrostatic materials, conducting adhesives, electromagnetic shielding 
against electromagnetic interference (EMI), artificial nerves, aircraft structures, diodes, and 
transistors. This review papers discuss important potential applications of these nanofibers and 
nanotubes in various fields such as sensors, nanodiodes, field effect transistors, field emission and 
electrochromic displays, supercapacitors and energy storage, actuators,
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Nanotechnology is the sprightly growing area of research because of 
its massive potential for a wide variety of applications (1). Nano-
structures are classified into four categories namely: 1D, zero-, 2D 
and 3D structures. These structures are having their own importance 

ave gained substantial 
interest because of their aberrant properties such as Physical, 
electronics, especially on Nano scale systems. 1D-nanostructure have 
very important feature device function, in different kinds of nano 

arkable breakthrough in 1D-
nanostructures with molecular scale and nano scale properties that can 
meet the demands of society in the modern era. Some examples are 

 (5-25). These nano 
tions in variegated areas such as 

nano electronics or molecular electronics, biotechnology, nano 
5-16). These nano-

materials possess distinctive properties due to which they have 
and can be used as electrical as well as 

used for doping process both reversible doping 
and dedoping. Polymers such as polyacetylene (PA), polyaniline 

vinylene) (PPV), poly 
and other polythiophene 

derivatives, etc., have drawn special attention in the field of 
nanoscience and nanotechnology because of their These controllable 
chemical and electrochemical properties and easy processability. (10–

Different physical and chemical processes have been embraced 
CP) nanotubes and 

free method,, hard physical 
guided synthesis and soft chemical template synthesis  

 
 
 (e.g., interfacial polymerization, dilute polymerization, reverse 
emulsion polymerization, etc.), 
techniques. The following section deals with the specific behavior and 
working of conducting polymers and their wide ran
All the properties of conducting polymers are discussed briefly in this 
review 
 
CONDUCTING POLYMER: As clear by the name of Conducting 
polymers. They shows very good conduction properties. A part from 
these they also show other important properties such as optical 
properties, electronic behaviour, magnetic, mechanical, wetting, and 
microwave-absorbing properties Fig. 1
 
ELECTRICAL-CONDUCTING PROPERTIES
conducting property of conducting polymers is enhanced by dopi
Doping increases their conductivity to a level comparable with 
metallic conductors. Martin (
conductivity of a single nano fiber is 
greater than the material in pellet nanotubes or nanowires.
co-workers (24) examined the electrical conductivity of PANI 
nanotubes; it was observed that the conductivity of a single nano tube 
was enhanced by two orders of magnitude. Generally, incorporating 
an insulating component with 1D-
will decrease electrical conductivity because 
conductive path by the insulating component. Long 
that the resistivity of beta-napthalene sulfonic acid
PANI/Fe3O4 composite nano wire pellets increased with decreasing 
temperature, which is a typical semiconducting behavior. The 
decreased composite conductivity is attributed to the increased charge 
carrier scattering between NSA-doped 
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e.g., interfacial polymerization, dilute polymerization, reverse 
,  and a variety of lithography 

techniques. The following section deals with the specific behavior and 
working of conducting polymers and their wide range of applications. 
All the properties of conducting polymers are discussed briefly in this 

As clear by the name of Conducting 
polymers. They shows very good conduction properties. A part from 

important properties such as optical 
properties, electronic behaviour, magnetic, mechanical, wetting, and 

absorbing properties Fig. 1 

CONDUCTING PROPERTIES: The electrical 
conducting property of conducting polymers is enhanced by doping. 
Doping increases their conductivity to a level comparable with 

(23) showed that the electrical 
conductivity of a single nano fiber is one or two orders of magnitude 
greater than the material in pellet nanotubes or nanowires. Chen and 

examined the electrical conductivity of PANI 
nanotubes; it was observed that the conductivity of a single nano tube 
was enhanced by two orders of magnitude. Generally, incorporating 

-conducting polymer nano materials 
will decrease electrical conductivity because of the partial blockage of 

component. Long et al. (25) showed 
napthalene sulfonic acid (NSA) -doped 

wire pellets increased with decreasing 
perature, which is a typical semiconducting behavior. The 

decreased composite conductivity is attributed to the increased charge 
doped PANI/Fe3O4 nanoparticles.  
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Fig. 1. Properties of Conducting Polymers 
 
A similar decrease in electrical conductivity was also observed in 
various kinds of 1D-conducting polymer nano composite system (26-
28). On the other hand, incorporating another nano component with 
high electrical conductivity into conducting polymers may enhance 
the conductivity of nano composites. Long et al. (29) studied the 
electrical conductivities of CNT/ PANI composite nano cables; it was 
found that the conductivity of pure PANI increases with increasing 
CNT loading. The CNTs could serve as a ‘‘conducting bridge’’ 
between conducting domains after their introduction to the conducting 
polymers, thus enhancing electrical conductivities (30-32).  
 
Furthermore, the conductivity of well-aligned CNT/PANI nano 
composites decreased with decreasing temperature, indicating a 
typical semiconductor behavior (33). Similar results have also been 
obtained for CNT/PPY composite nanocables (34). Incorporation of 
metal nano particles into conducting polymers can also enhance the 
electrical conductivity of conducting polymers (35). The electrical 
conductivity of single Au/PANI nano cables is much higher than a 
single CSA-doped PANI nano tube (36-37). Various nano structures 
of functionalized PE DOTs were created using a template-free electro-
polymerization method on indium-tin-oxide substrate. The result 
provided the relationship between the functional group, nano 
structures and electrical properties (38).  
 
MAGNETIC PROPERTIES 
 
Conducting Polymers are magnetically very important as they give 
information about unpaired spins and charge carrying species (39-42). 
Lu et al. (43) studied the magnetic properties of PANI/Fe3O4 
composite nanotubes synthesized by an ultrasonic irradiation 
technique. Long et al. studied the magnetic properties of PANI/Fe3O4 
composites nanorods prepared via a self-assembly technique. 
Compared to the self-assembly method, the samples synthesized 
through the ultrasonic irradiation technique facilitate the dispension of 
Fe3O4 particles. The composite nanotubes synthesized through the 
ultra sonic irradiation technique showed a super-paramagnetic 
behavior. The magnetic properties of 1D-conducting polymers/Fe, Co, 
Ni nano-composities have also been studied (44-47).  
 
OPTICAL PROPERTIES 
 
The unique optical properties of conducting polymers have been 
extensively explored because of their applicability in nanophotonic 
devices. The 1D-nanostructured semiconductors are suitable for the 
fabrication of photodetectors, photochemical sensors, and photonic 
wire lasers (48–51).  

Xi et al. (52) studied the optical properties of CdS/PANI composite 
nanocables and found that the photoluminescence spectrum had 
similar features to CdS nanowires, but signal intensities were 
enhanced. Such enhancement was due tothe photo-generated carriers 
transferring from the PANI layer into CdS nanowires. Turac et al. 
synthesized a new polythiophene derivative by electrochemical 
oxidative polymerization of 2,5-di (thiophen-2-yl) -1- (4- (thiophen-3-
yl) phenyl) -1-H-pyrrole (TTPP) and the optical contrast, switching 
time, kmax and band gap have been determined (53).  
 
WETTABILITY 
 
Wettability is one of the most important properties of a solid surface, 
leading to applications such as self-cleaning surfaces, microfluidics, 
controlled drug delivery, and bio-separation (54-56) Generally, 
conducting polymers are hydrophilic (57-58). A film of conducting 
polymers with super hydrophobic properties can be fabricated by 
doping hydrophobic acids (59-60). A reversibly switchable super 
hydrophobic and super hydrophilic surface can be observed by 
controlling the chemical composition of conducing polymers (61,62). 
The wettability of films of PAN/PANI coaxial fibers has also been 
observed to have chemical dual-responsive feature (63). A single-
layered photo polymerized nanocomposite film of polystyrene and 
TiO2 nano rods change their wetting character from hydrophobic to 
hydrophilic when deposited on substrates with decreasing 
hydrophilicity (64).  
 
MECHANICAL PROPERTIES 
 
Recently, the mechanical properties of a single nanotube have drawn 
much attention (65). Cuenot et al. (66) studied the force-curve 
measurement or resonance-frequency measurement and reported the 
elastic tensile modulus of polypyrrole nanotube. It was found that the 
elastic modulus strongly increased when the thickness of the 
polypyrrole nanotube wall or its outer diameter decreased. Similar 
size-dependent mechanical behavior has also been observed in other 
single nanofibers (67–74). Inorganic nanowire such as CuO, silver, 
lead and nano sized wire. 
 
MICROWAVE ABSORBING PROPERTY 
 
Conducting polymers has also find applications as material absorbing 
microwave materials due to their lower density and their easy 
processibility. Wan et al. (78) found that PANI-NSA and PANI-
NSA/glucose micro-nanotubes prepared by a template-free method 
show excellent electromagnetic loss. Liu et al. (79) reported that the 
doped polyaniline with fiber-like morphology has a better 
electromagnetic wave-absorbing property than that of polyaniline 
with particle-like morphology. Above studies shows that conduction 
polymers material especially nanotubes can be used as light weight 
absorbent material with high absorption, wide frequency.  
 
APPLICATIONS OF CONDUCTING POLYMERS 
 
Due to the synergistic effect of multi-components, conducting 
polymer nano composites exhibit multifunctional and unique 
properties. Therefore, such conducting polymer nanocomposites are 
expected to find applications in many fields, such as nano electronic 
devices, chemical or biological sensors, catalysis or electrocatalysis, 
energy, microwave absorption and biomedicine  
 
Electronic Nano devices: Most conducting polymers are suited for the 
construction of electronic devices because of their high electrical 
conductivity, mechanical flexibility and low cost. Incorporating 
metals, semiconductors, carbon nanomaterials and insulating 
polymers into conducting polymers to form nano composites may 
affect the conductivity of conducting polymers, which is potentially 
applicable in light emitting diodes, transistors, memory and 
photovoltaic devices. 
 
Field Effect Transistors and Diodes: Polymer nanofibers are used as 
Field effect transistors (80–84).  
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Pinto et al. (80) reported an electro-spun polyaniline/poly-ethylene 
oxide nanofiber field-effect transistor. Liu et al. (81) reported a single 
nanofiber field-effect transistor from electrospun poly (3-
hexylthiophene). Qi et al. (82) also reported an ultra-short poly (3-
hexylthiophene) field-effect transistor with channel length 5–6 nm 
and width 2nm.Alametal. (83) reported an electrolyte-gated 
transistorbased on conducting polyaniline, polypyrrole and PE DOT 
nano wire junction arrays. Lee et al (84) also reported an electrolyte-
gated conducting polyaniline nanowire field-effect transistor. Guo et 
al. (85,86) analysed that p-n junction nanowire consisting of 
polypyrrole and CdS fabricated using template of Al2O3. Park et al. 
(87) constructed a nano-device from single Au-polypyrrole-Cd-Au 
nanorods, which exhibited diode behavior at room temperature. Pinto 
et al. (88,89) reported a Schottky diode using an n-doped Si/ SiO2 
substrate and an electro spun fully doped polyaniline nanofiber. Liu et 
al. (90) demonstrated that Au/template-synthesized polypyrrole 
nanofiber devices show rectifying behavior and might be used as 
nano-rectifiers. 
 
Polymer Light-Emitting Diodes, Field-Emission and 
Electrochromic Displays: Nanofibers/tubes of polyaniline, 
polypyrrole and PEDOT have also been explored for polymer light-
emitting diodes (PLEDs) (91–94), field emission (95–98) and 
electrochromic displays (99–103). Boroumand et al. (93) designed 
nanoscale of arrays with conjugated-polymer light-emitting diodes. 
Yan et al. (98) & Kim et al. (97) reviewed the field-emission cells of 
template-synthesized PEDOT nanowires. Due to the ability to change 
color under an applied potential, conducting polymer nanostructures 
have been investigated as the active layer in electrochromic devices 
(99–103). For example, Cho et al. (99) illustrated fast color-switching 
electrochromic device established on a nanotubular PEDOT. Kim et 
al. (103) discussed about electrochromic device from nanostructured 
PEDOT extended on vertical Si nanowires.  
 
Catalysis-Photo & Chemical Catalysis: The catalytic properties of the 
PANI/Pd composite nanofibers have been studied for use in Suzuki 
coupling reactions (137). PANI/Pd nanotubes synthesized by the tem-
plating method were used as chemical catalysts (138). TiO2 is very 
effective photocatalyst, it is strong oxidizing and non-toxic. The TiO2 

catalysis for decomposing toxic inorganic or organic compounds is 
attributed to the formation of superoxidant (OH. and O2—) generated 
from water decomposing in the presence of TiO2 under radiation 
(139). TiO2/PANI bilayer microtubes had an increased catalytic 
property to decompose methyl orange, which was due to the red shift 
of the absorption regionof TiO2 because of photosensitization by 
PANI (140).  
 
Electrocatalysis: Tiwari and Singh have proposed the synthesis of a 
polymer nanocomposite from PANI/PAA/MWCNTs by an in situ 
chemical polymerization method. The nanocomposite thus formed has 
improved catalytic, electrochemical and electrical behavior (141). 
Huang et al. (142) fabricated PANI/ Au composite nanotubes as 
electrodes for the oxidation of NADH. Zhao and his coworkers 
fabricated poly (N-isopropyl acrylamide) -grafted multi walled carbon 
nano tubes on to aPniPAm-modified substrate for bioelectrocatalysis 
of NADH (143). PPy/Cobalt porphyrin and PANI/Cobalt porphyrin 
composite nanorods displayed good electrocatalytic properties of 
oxygen reduction in neutral electrolytes (144).  
 
Energy Storage as Lithium Ion Batteries, Solar Cell & Fuel Cell: 
Energy has become the most important global concern because fossil 
fuels are going to be exhausted. Usually, conducting polymer 
nanostructures have higher specific capacitance values and can be an 
alternate in the development of the next generation energy storage 
devices (145–150). Solar cells are energy conversion devices that 
convert sunlight to electric energy. Conducting polymers have unique 
properties of light absorbance and hole transporting when combined 
with metal oxide, which may contribute to the improvement of the 
photovoltaic efficiencies (151–158). TiO2 nanotube arrays are 
considered as good candidates for the construction of solar cells 
because they provide good pathways for electron migration. Fuel cells 
convert the chemical energy directly into electricity by 

electrochemical reactions. In recent decades, fuel cells have attracted 
attention for their applications in electric vehicles (159,160). Due to 
high energy conversion efficiency, fuel portability and environment 
friendliness, direct methanol fuel cells (DMFCs) have been a research 
focus in the field of energy applications (161). The effects of an 
electrocatalyst on the performance of DMFCs have been extensively 
studied, and conducting polymers with 1D-nanostructures have 
become good candidates as electrocatalyst supports (162–166). 
Conventional rechargeable nickel-cadmium or nickel-metal hydride 
batteries are limited by their capacity and durability. On the other 
hand, lithium ion batteries that are lighter and have much greater 
capacity have been considered as the most promising and practical 
rechargeable batteries (167–171). Thus, the 1D-nanostructured 
materials have proved to be good candidates in Li-ion battery 
electrodes because of their high specific capacity and good cycle 
performance (172–174).  
 
Supercapacitors: Supercapacitors are one of the most promising 
energy storage devices for a wide range of applications in electric 
vehicles, uninterruptible power supplies, etc. (175–177) Compared to 
lithium-ion batteries, supercapacitors exhibit higher specific power. 
There are mainly three kinds of electrode materials for 
supercapacitors, i.e., carbon, metal oxides and conducting polymers 
(178–187). Conducting polymers have high specific capacitance, but 
their cyclic stability is poor. This drawback has been overcome by the 
fabrication of conducting polymer nanocomposites (188–193).  
 
SENSORS-Chemical, Optical, Biosensors: Conducting polymers 
have been widely explored as chemical sensors, optical sensors and 
biosensors because their electrical and optical properties can be 
reversible changed by doping/depoing processes (104–108).  
 
Biosensors: Recently, conducting polymers have attracted much 
interest in the development of biosensors because they act as excellent 
materials for immobilization of biomolecules and rapid electron 
transfer for the fabrication of efficient biosensors (126). PANI/PS 
composite nanofibers prepared by Electrospinning technique were 
employed to detect H2O2 (127-128). Composite nanofibers containing 
PANI, Fe3O4 and CNTs were prepared and doped with enzyme for the 
fabrication of glucose biosensors (129). Conducting polymer 
nanocomposites, when encapsulated with lipase, can be utilized as 
biosensors to detect triglyceride (130). Shin et al. fabricated an 
amperometric cholesterol biosensor using polyaniline-coated 
polyesterfilmsfor thedetectionof triglycerides (131). Immobilization of 
DNA onto conducting polymers has been extensively studied for 
detection of various DNA target sequences and microorganisms 
(132,133). Zhang et al. (134) reported poly (methyl vinyl ether-alt-
maleic acid) -doped polyaniline nanotubes for oligonucleotide 
sensors. Peng et al. (135) reported a functionalized polythiophene as 
an active substrate for a label-free electrochemical genosensor. 
Langer et al. (136) reported a bacterial nano-biodetector, which can 
also be utilized in bio-alarm systems. 
 
Chemical and Gas Sensors: Gas sensors have abroad range of 
applications such as industrial production, food processing, 
environmental monitoring, health care, etc. (109–111) The PANI 
nanofibers synthesized by interfacial polymerization have shown that 
they have much higher sensitivity for the detection of NH3 than 
conventional PANI films (112). On the other hand, the addition of a 
second component into 1D-nanostructured conducting polymers can 
enhance their applications as gas sensors (113). Besides NH3, the 
addition of metal oxide nanoparticles into1D-nano structured 
conducting polymers can extend their applications in detecting other 
gases. For example PANI/In2O3 composite nano fibers synthesized 
via chemical polymerization were used as sensors in detection of H2, 
CO and NO2 at room temperature (114). PANI/WO3 composite 
nanofibers were also employed in sensors for detection of H2gas; 
however, the sensitivity was worse than PANI/In2O3 composite nano 
fiber based sensors (115). Metal salts can also be embodied into the 
1D-nanostructured conducting polymer matrix in form of gas sensors. 
For example PANI/CuCl2 composite nanofibers demonstrated a high 
response for H2S gas (116). Blend of PANI-PVP has improved 
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sensitivity towards chloroform and decreased sensitivity towards 
CH2Cl2 (117). The polypyrrole–chitosan layer has been used to detect 
Zn+2 and Ni+2 ions in aqueous solution by surface plasmon resonance 
(118).  
 
Optical Sensors: Gu et al.. (120,121) demonstrated a single wave-
guiding polyaniline/polystyrene nanowire for highly selective optical 
detection of gas mixtures. Wang et al. (122,123) explored the 
photosensitivity and photo-response of a bunch of polyanilne 
nanowires, which showed that nanofiber of conducting polymer might 
be useful in the fabrication of photosensor and photo switch ano 
devices. Zhu et al. (124-125) reported a pH sensor of polyaniline 
perfluoro sebacic acid-coated fabric.PANI/PAA/MWCNTs by an in 
situ chemical polymerization method. The nanocomposite thus 
formed has improved catalytic, electrochemical and electrical 
behavior (141). Huang et al. (142) fabricated PANI/ Au composite 
nanotubes as electrodes for the oxidation of NADH. Zhao and his 
coworkers fabricated poly (N-isopropyl acrylamide) -grafted multi 
walled carbon nano tubes on to aPniPAm-modified substrate for bio-
electrocatalysis of NADH (143). PPy/Cobalt porphyrin and 
PANI/Cobalt porphyrin composite nanorods displayed good 
electrocatalytic properties of oxygen reduction in neutral electrolytes 
(144).  
 
Microwave Absorption and EMI Shielding: Radio frequency 
interference/electro-magnetic frequency interference (EMI) is a 
serious issue caused by rapid proliferation of electronics, wireless 
systems, navigation, space technology, etc. EMI affects the 
performance of the electric device as well as various life forms, 
including human beings. Therefore shielding materials such as metals, 
carbon materials and conducting polymers have been employed to 
prevent electromagnetic noise. The uses of conducting polymers as 
shielding materials have attracted increased attention due to their 
good electrical conductivity and processibility (194,195). It has been 
observed that for conducting polymers, when combined with other 
nano components like CNT, PANI enhances EMI shielding 
performance (196–198). Polyaniline microtubes/nanofibers (199,200) 
and polyaniline-multi walled carbon nanotube nano compo-sites (201) 
can be used as microwave absorbers and electromagnetic 
interference-shielding materials. 
 
Electro rheological Fluids: Electrorheological (ER) fluids have wide 
applications in clutch systems, brakes, hydraulic valves, and dampers 
for their adjustable properties of vibration control under an external 
stimulus. Particles of high dielectric constant and low conductivity 
dispersed in a non-conducting fluid medium are generally the 
component of ER fluids. This property under an electric field can be 
changed reversibly in a short period of time. Recently, conducting 
polymers have been mostly used as polarizable particles because of 
their superior physical properties such as better environmental 
stability and high polarizability (202–217).  
 
Biomedical Applications: For the past few decades, conducting 
polymers have drawn much attention for their biomedical applications 
(218,219). Most biological cells are sensitive to electrical impulses; 
therefore, conducting polymers can be used in the field of tissue 
engineering to modulate cellular activities. PANI and PPY are 
attractive candidates in biomedical applications for their 
biocompatibility, ease of synthesis, low cost and rich redox chemistry. 
 
Drug Delivery and Protein Purification: To enhance the drug-
targeting specificity and decease systemic drug toxicity, many drug 
delivery system devices have emerged during the last few decades, 
which have been used for treatment of different kinds of diseases. The 
different type of delivery systems include polymeric microspheres, 
polymer micelles, polymeric nanofibers, micro-nano gels, etc. One of 
them ajor draw backs of the delivery system is to maintain a strict 
control of ON/ OFF state. To overcome this drawback, conducting 
polymers have been used as they show a reversible electrochemical 
response, i.e., they contract upon reduction and expand upon 
oxidation. Thus, this induced volume change is expected to favor the 
controlled release of various kinds of drugs (220,221). Various 

conducting polymers such as PPY film, PAA microspheres, and 
PEDOT nanotubes have been used for this purpose (222–224). The 
controlled drug release based on conducting polymer nanocomposites 
is a useful means of fabricating electronically active devices with 
living tissues. Some of the advantages of conducting polymer 
nanocomposites include: easy loading, little influence on drug 
activity, and controlled release rate. It has been reported that 
chemically modified PPY micro tubes can be used as an affinity 
matrix for protein purification; and, on elution of the protein, the 
desorption ratio was high (225).  
 
Kim et al. (232),  to have low impedance and high charge density and 
a capacity for controlled drug release (233). The biodegradable 
electrospun nanofiber helps in controlled release of drugs, and the 
hydrogel layer sustains the release of drugs. The spectroscopy 
measurements of PEDOT nanotubes have revealed that they can be 
used as a novel method for biosensing to indicate the transition 
between acute and chronic response in the brain tissues (234,231). It 
has also been demonstrated that PPY and PEDOT nanotubes have 
better adherence to the surface of the electrodes in comparison with 
their film counterparts (235,236).  
 
Other Applications: One of the potential applications of polyaniline 
nanofibers is that they are better corrosion protectors for mild steel 
than conventional aggregated polyaniline (248). Conducting 
polyaniline nanofibers are used as nanofillers to improve the electrical 
properties of a ferroelectric copolymer (249). Some of the other 
potential applications of polyaniline nanofibers, when decorated with 
gold nanoparticles, exhibit an interesting bi-stable electrical behavior. 
This behavior allows it to be switched electrically between two states, 
which maybe used in the fabrication of Plastic digital nonvolatile 
memory devices. 
 

CONCLUSION 
 
During the last 20 years, magnificent progress has been done in 
synthesis, morphology, and structural characterizations of conducting 
polymers. The physical and chemical properties of conducting 
polymer as well as nanofibers and nanotubes have also been analyzed 
in detail. The future developments in this field should focus on 
improving synthetic methods and deriving novel assembly processes 
for better control of the size, composition, structure, and interface of 
conducting polymer nanocomposites. The efficient, and large-scale 
preparation of nanostructures of conducting polymers with non-
disperse and well-desire morphology and size, are still in demand. 
Conducting polymer nanotubes and nanofibers have shown an 
impressive application potential ranging from energy harvesting and 
biochemical sensing to electronic devices and drug delivery. 
However, due to the complicated microstructures of conducting 
polymers, there are still problems in fulfilling their full potential 
applications in nanoscale devices, such as the reproducibility and or 
controllability of individual polymer nanotubes/wires, stability of the 
doping level, and improving processability of conducting polymer 
nanostructures. In the area of energy applications, super capacitors 
based on conducting polymers continue to attract increasing attention 
for their large specific capacitance. However, their stability is not 
very good. It is expected that adding another nano component may 
enhance the stability of the super capacitor device. 
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