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INTRODUCTION 
 
Throughout this study, we only consider graphs which are finite, 
simple and undirected. The symbol V  (G) denotes the vertex set and 
E (G) denotes the edge set of G. The order of 
cardinality of V  (G) and the size of G refers to the cardinality of 
(G). The symbol |V  (G)| denotes the order of G 
the size of G. If |E (G)| = 0, then G is an empty graph
graph of order n is denoted by Kn. If V  (G) is singleton, 
trivial graph 
 
Any graph H is a subgraph of G if V  (H) ⊆ V  
(G). For a non-empty S ⊆ V  (G), 〈S〉 denotes the subgraph 
for which |E (H)| is the maximum size of a subgraph of 
set S. An edge e of G is said to be incident to vertex 
uv for some u ∈ V  (G). The symbol G - v denotes the resulting 
subgraph of G after removing v from G and all edges in 
v. If u, v ∈ V  (G), the symbol G + uv denotes the graph obtained from 
G by adjoining to G the edge uv. 
 
The closed neighborhood NG [v] of a vertex 
consisting of v and every neighbor of v in G. Any 
dominating set in G if tv∈S NG [v] = V  (G). A dominating set in 
also called a γ-set in G. The minimum cardinality 
is the domination number of G. Any γ-set in G of cardinality 
referred to as the minimum γ-set in G.  
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A dominating set is an independent dominating set 
all u, v ∈ S. The minimum cardinality of an independent dominating 
set is called the independence domination number 
(G). Any independent dominating set in 
referred to as a γi-set in G. Two distinct vertices 
neighbors in G if uv ∈ E  (G). 
 
A dominating set is called a closed dominating set 
choose v1 ∈ V  (G) and put S1 = {
∈ V  (G) \ S1 and put S2 = {v1, v2
∈ V  (G)\NG[Sk-1] and put Sk 
positive k such that NG[Sk] = V 
closed dominating set is called the 
and denoted by γ (G). A closed dominating set of cardinality 
called γ-set of G. A closed dominating set 
canonical form if it is written as 
vertices vj satisfy the properties given 
Therefore,  
 
Let D be a minimum dominating set in 
(G)\D is called an inverse dominating set 
minimum cardinality of inverse dominating set is called an 
domination number of G and is
dominating set of cardinality γ-1 (G
by the definition of inverse domination in a graph, we
domination parameter.  
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closed dominating set if given a graph G, 
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Let C be a minimum closed dominating set in G. The closed 
dominating set S ⊆ V  (G) \ C is called an inverse closed dominating 
set with respect to C. The minimum cardinality of an inverse closed 
dominating set is called an inverse closed domination number of G 
and is denoted by γ-1 (G). An inverse closed dominating set of 
cardinality γ-1 (G) is called γ-1-set of G. 
 
Domination is one of the most well-studied concepts in graph theory. 
The reader is referred to  (Canoy et al, Chartrand et al 2012, 
Cockayne et al 1977, Go et al 2011) for the fundamental concepts and 
recent developments of the domination theory, and to  (Berge 1962, 
Haynes et al 2002, Walikar et al 1979) for its various applications. 
Inverse domination is studied further in  (Jude Annie Cynthia et al 
2018, Kiunisala et al 2014, Tamizh Chelvan et al 2013). 
 

RESULTS 
 
A classical result in the domination theory which was introduced by 
Ore in 1962 is the following theorem: 
 
Theorem 2.1 Let G be a graph with no isolated vertex and S a 
minimum dominating set. Then V  (G) \ S is a dominating set in G. 
 
This motivates a new domination parameter, the inverse closed 
domination  in graphs. Theorem 2.1 guarantees the existence of a γ-1-
set in a graph G. Since the inverse closed dominating set of any graph 
G of order n cannot be V  (G), it follows that γ-1 (G) ∕= n and hence γ-
1 (G) < n. Since γ-1 (G) does not always exist in a connected 
nontrivial graph G, we denote by G- c 1 the family of all graphs with 
an inverse closed dominating set. Thus, for the purpose of this study, 
it is assumed that all connected nontrivial graphs considered belong to 
the family G- c 1. From the definitions, the following result is 
immediate. 
 
Remark 2.2 Let G be a connected graph of order n ≥ 2. Then 
 
 (i) 1 ≤ γ-1 (G) < n; 
 (ii) γ (G) ≤ γ (G) ≤ γ-1 (G) ≤ γ-1 (G). 
 
Consider, for example, the graph G in Figure 1. We have the set 
{f,g,h} as a minimum dominating set, thus γ (G) = 3. The set {a, i, g, 
h} is the minimum closed dominating set, thus γ (G) = 4. The set {b, c, 
d, e, f, j, k, l, m} is the minimum inverse closed dominating set, thus γ-
1 (G) = 9 and the set {a, b, c, d, e, i, j, k, l, m} is the minimum inverse 
dominating set, thus γ-1 (G) =10. 

 
 

Figure 1. Graph G where γ (G) ≤ γ (G) ≤ γ-1 (G) ≤ γ-1 (G) 
 
Since any independent dominating set is a closed dominating set, it 
follows that the inequality γ (G) ≤ γ (G) ≤ γi (G) holds. From Figure 1, 
{a, e, g, i, m} is the minimum independent dominating set, thus γi (G) 
= 5. The following remark holds. 
 
Remark 2.3 Let G be a connected nontrivial graph of order n ≥ 2.  
Then γi (G) ≤ γ-1 (G). 
 
Recall that by an independent set we mean any S ⊆ V  (G) such that 
uv / ∈ E (G) for all u, v ∈ S, and the symbol β (G) denotes the 
maximum cardinality of an independent set in G. An independent set 
S with |S| = β (G) is called a β-set. 

CORONA OF GRAPHS 
 
The corona of two graphs G and H is the graph G ◦ H obtained by 
taking one copy of G and |V  (G)| copies of H, and then joining the ith 
vertex of G to every vertex in the ith copy of H.  We denote by Hv 
that copy of H whose vertices are adjoined with the vertex v of G. In 
effect, G ◦ H is composed of the subgraphs Hv + v = Hv + 〈{v}〉 
joined together by the edges of G. 
 
Theorem 3.1 (Canoy, S.R. Jr. and M.A. Labendia) Let G be a 
connected graph and H be any graph. Then C ⊆ V  (G ◦ H) is an 
independent dominating set in G ◦ H if and only if C ∩ V  (G) is an 
independent set in G and C ∩ V  (Hv + v) is an independent 
dominating set in Hv + v for every v ∈ V  (G). 
 
Theorem 3.2 (Canoy, S.R. Jr. and M.A. Labendia) Let G be a 
connected graph of order n and H be any graph with γ (H) ∕= 1. If C ⊆ 
V  (G ◦H) is a γi-set in G ◦H, then C ∩ V  (G) is a β-set in G. 
 
Theorem 3.3 (Go C.E. and S.R. Canoy Jr. 2011) Let G be a 
connected graph and H be any graph. Then C ⊆ V (G ◦ H) is a 
dominating set in G ◦ H if and only if C ∩ V (Hv + v) is a dominating 
set in Hv + v for every v ∈ V (G). 
 
Theorem 3.4  (Tacbobo, T.L. and F.P. Jamil 2012) Let G and H be 
any two graphs, with γ (H) ≥ 2, and let S ⊆ V  (G ◦ H). If S is a 
minimum closed dominating set in G ◦ H, then S ∩ V  (G) is a closed 
dominating set in G. In this case, if S ∩ V  (G) is nonindependent  
(resp. independent) dominating in G, then S∩V  (G) is a maximum 
non-independent  (resp. independent) closed dominating set in G. 
 
In particular, Theorem 3.1, Theorem 3.2 and Theorem 3.4 yield the 
following corollary. 
 
Corollary 3.5 Let G and H be connected graphs with γ (H) ≥ 1, and 
let S ⊆ V (G ◦ H). Then S is a γ-set in G ◦ H if and only if S ∩ V  (G) is 
a β-set in G and S ∩ V  (Hv) is a γ-set in Hv for all v ∈ V  (G) \ S 
 
Proposition 3.6 Let G and H be any graphs. Then 
 
γ-1 (G ◦ H) =  (γ (H) - 1)β (G) + |V  (G)|. 
 
Proof: Verify that the claims are true for |V  (G)| = 1 or γ (H) = 1. 
Now we  assume that |V  (G)| > 1 and γ (H) > 1. Let S ⊆ V  (G ◦ H) 
be a γ-1-set in G ◦ H, and let D ⊆ V  (G ◦ H) \ S be a γi-set in G ◦ H. 
By Theorem 3.2, D ∩ V  (G) is a β-set in G and for each v ∈ V  (G ◦ 
H) \ D, D ∩ V  (Hv) is a γ-set in Hv. For each v ∈  D ∩ V  (G), choose 
a γ-set Sv in Hv, and define S∗ =  (∪ v∈ D∩V  (G)Sv) ∪   (V  (G) \ D). 
By Theorem 3.3, S∗ is a dominating set in G ◦ H. Since S∗ ∩ D = ∅, 
S∗ is an inverse close dominating set in G ◦ H.  Thus, |S| ≤ |S∗|. On 
the other hand, for each v ∈ D ∩ V  (G), v / ∈ S so that S ∩ V  (Hv + v) 
= S ∩ V  (Hv). By Theorem 3.1, S ∩ V  (Hv) is a dominating set in Hv, 
and thus, |Sv| ≤ |S ∩ V  (Hv + v)| for all v ∈ D ∩ V  (G). Thus, 
 

 
 
Therefore, |S| = γ (H)β (G) + |V  (G)| - β (G) =  (γ (H) - 1)β (G) + |V  
(G)|. 
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