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ARTICLE INFO                                        ABSTRACT 
 
 

Recently, Single
overcome the difficulties in solving some singular system problems. 
Preliminary experiments have shown that this method is usually more 
efficient than the other methods. In this article, STHW is developed to 
approximate the solution
equations. The obtained discrete solutions using the STHW are found to 
be very accurate and are compared with the exact solutions of the 
nonlinear Volterra
obtained show that STHW is more useful for solving nonlinear 
Volterra-Hammerstein integral equations and the solution can be 
obtained for any length of time
 
 

 
INTRODUCTION 
 

Mathematical modeling has been used more and 
more in many areas such as in science, 
engineering, medicine, economics and social 
sciences. Differential equations are one of the 
important and widely used techniques in 
mathematical modeling. However, not many 
differential equations have an analytic solution and 
even if there is one, usually it is extremely difficult 
to obtain and it is not very practical. Thus, 
numerical methods are truly a crucial part of 
solving differential equations which cannot           
be neglected. Since the late 18th century, numerical  
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Recently, Single-term Haar wavelet series (STHW) is introduced to 
overcome the difficulties in solving some singular system problems. 
Preliminary experiments have shown that this method is usually more 
efficient than the other methods. In this article, STHW is developed to 
approximate the solution of nonlinear Volterra-Hammerstein integral 
equations. The obtained discrete solutions using the STHW are found to 
be very accurate and are compared with the exact solutions of the 
nonlinear Volterra-Hammerstein integral equations. The results 

w that STHW is more useful for solving nonlinear 
Hammerstein integral equations and the solution can be 

obtained for any length of time. 

                

 
methods for solving differential equations have 
been developed continuously by many 
mathematicians. Later on in the 20th century, this 
subject made great improvements in the context of 
modern computers. Several numerical methods for 
approximating the solution of Hammerstein 
integral equations are known. For Fredholm-
Hammerstein integral equations, the classical 
method of successive approximations was 
introduced in Tricomi (1982). A variation of the 
Nystrom method was presented in Lardy (1981). A 
collocation type method was developed in Kumar 
et al. (1987). In Brunner (1982), Brunner applied a 
collocation-type method to nonlinear Volterra-
Hammerstein integral equations and integro-
differential equations, and discussed its connection 
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with the iterated collocation method. Guoqiang 
(1993) introduced and discussed the asymptotic 
error expansion of a collocation-type method for 
Volterra-Hammerstein integral equations. The 
methods in Kumar et al. (1987) and Guoqiang 
[1993] transform a given integral equation into a 
system of non-linear equations, which has to be 
solved with some kind of iterative method. In 
Kumar et al. (1987) the definite integrals involved 
in the solution may be evaluated analytically only 
in favorable cases, while in Guoqiang (1993) the 
integrals involved in the solution have to be 
evaluated at each time step of the iteration.  
 
     Orthogonal functions, often used to represent 
arbitrary time functions, have received 
considerable attention in dealing with various 
problems of dynamic systems. The main 
characteristic of this technique is that it reduces 
these problems to those of solving a system of 
algebraic equations, thus greatly simplifying the 
problem. Orthogonal functions have also been 
proposed to solve linear integral equations. Runge 
–Kutta methods are being applied to determine 
numerical solutions for the problems, which are 
modeled as Initial Value Problems (IVP’s) 
involving differential equations that arise in the 
fields of Science and Engineering by Alexander 
and Coyle (1990), Murugesan et al. (1999; 2000; 
2001; 2003), Shampine [1994] and Yaakub and 
Evans (1999). Runge-Kutta methods have both 
advantages and disadvantages. Runge-Kutta 
methods are stable and easy to adapt for variable 
stepsize and order. However, they have difficulties 
in achieving high accuracy at reasonable cost, 
which were discussed recently by Butcher (2003). 

 
     Murugesan et al. (1999) have analyzed different 
second-order systems and multivariable linear 
systems via RK method based on centroidal mean. 
Park et al. (2004; 2005) have applied the RK-
Butcher algorithm to optimal control of linear 
singular systems and observer design of singular 
systems (transistor circuits).Murugesan et al. 
(2004) and Sekar et al. (2004) applied the RK-
Butcher algorithm to industrial robot arm control 
problem and second order IVP’s. In this paper, we 
are introducing here the STHW for finding the 
numerical solution of nonlinear Volterra-

Hammerstein integral equations with more 
accuracy. 
 
STHW Method 

The orthogonal set of Haar wavelets  thi  is a 

group of square waves with magnitude of 1 in 
some intervals and zeros elsewhere Sekar et al. 
(2011). In general,  
 

   ,21 kthth j
n   where kn j  2 , 

Zkjnkj j  ,,,20,0  

 
















1
2

1
,1

2

1
0,1

1

t

t

th
 

Namely, each Haar wavelet contains one and just 
one square wave, and is zero elsewhere. Just these 
zeros make Haar wavelets to be local and very 
useful in solving stiff systems.  
 
Any function y(t), which is square integrable in the 
interval [0,1]. Can be expanded in a Haar series 
with an infinite number of terms 
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are determined such that the following integral 
square error  is minimized:  
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     Usually, the series expansion Eq. (1) contains 
an infinite number of terms for a smooth y(t). If y(t) 
is a piecewise constant or may be approximated as 
a piecewise constant, then the sum in Eq. (1) will 
be terminated after m terms, that is  
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where “T” indicates transposition, the subscript m 
in the parantheses denotes their dimensions. The 
integration of Haar wavelets can be expandable 
into Haar series with Haar coefficient matrix P[3].  

              1,0, tthPdh mmmm   

where the m-square matrix P is called the 
operational matrix of integration and single-term 

 
2

1
11 P . Let us define [5-6] 

                                                 

           tMthth mm
T
mm  ,      (3) 

and      .011 thtM   Eq.(3) satisfies    

           ,thCctM mmmmmm    

where  mc  is defined in Eq.(2) and   011 cC  . 

   
Nonlinear Volterra-Hammerstein integral 

equations 

    
In the present article I am concerned with the 
application of STHWto the numerical solution of 
nonlinear Volterra-Hammerstein integral equations 
of the form  

         ,10,,,

0

  tdssysgstktfty
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where f,g and k are given continuous functions, 
with g(s,y) nonlinear in y. Now I assume that (4) 
has a unique solution y to be determined. The 
method presented here does not requires the 
Kronecker product of matrices and there is no need 
for the operational matrix of integration. One main 
merit of using technique is that find the solution for 
any length of time. 
 
Illustrative Examples 

Example 1 
 
Consider the nonlinear Volterra-Hammerstein 
integral equation  
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By applying the technique described in preceding 
section, (5) is solved. The computational results for 
discrete approximations (DA) and continuous 
approximations (CA) of y(t) with interval length 
0.0001, together with the exact solution 

  ttty  2 are given in Figures 1 and 2. 

 

 

 
Fig.1.  Analytical Solution of Example 1 

 

 
 

Fig. 2. STHW Solution of Example 1 
 
Example 2 
 
Consider the nonlinear Volterra-Hammerstein 
integral equation  
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where   ,1,  tsstk and 
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By using the method in section 2, Equation (6) is 
solved. The computational results for interval 
length 0.0001 together with exact solution 

  1 tty are given in figures 3 and 4.  
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Fig. 3. Analytical Solution of Example 2 
 

 
 

 

Fig. 4. STHW Solution of Example 2 

 
Example 3 
 
Consider the equation  

        10,sin3sin1
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By using the method in Section 2, Equation (7) is 
solved. The computational results for DA and CA 
of y(t) with interval length 0.0001, together with 

the exact solution   tty cos are given in figures 5 

and 6. 
 

 
 

 

Fig. 5. Analytical Solution of Example 3  

 
 

Fig.6. STHW Solution of Example 3 
 

Conclusion 
 

The STHW are applied to solve nonlinear Volterra-
Hammerstein integral equations. This method is 
simple. It uses only six pieces of information from 
the past and evaluates the driving function only six 
per step. However, the STHW method is very 
practical for computational purpose since 
considerable computational effort is required to 
improve accuracy. From the Figures 1-6, STHW fit 
well to these types of problems. This STHW 
provided a momentum for advancing numerical 
methods for solving nonlinear Volterra-
Hammerstein equations. 
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