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INTRODUCTION 
 
 
The mosquito's saliva is transferred to the host during the bite, 
and can cause an itchy rash. In addition, blood
can ingest pathogens while biting, and transmit them to other 
hosts. Those species include vectors of parasitic diseases
as malaria and filariasis, and arboviral diseases such as
fever and dengue fever. By transmitting diseases, mosquitoes 
cause the deaths of over 725,000 people each year.
are the carrier of various diseases caused by pathogens, namely 
mosquitoes, flies, ticks, lice and bugs, not all the pathogens 
spread diseases to human, certain pathogens are aburden to 
plants and animals. Those diseases which are transmitted to 
humans by the mode of such pathogens are the vector borne 
diseases. These pathogens inspite of being tiny creatures, also 
are the origin of various diseases like dengue, chikungunya, 
malaria, yellow fever, filariasis and zika virus (Onen 
2023). 
 

MATERIALS AND METHODS
 
Multiple sequence alignment of AchE from A.gambiae, 
A.albopictus and C.pipiens The stepwise procedure for 
performing the multiple sequence alignment is as follows
Example: &gt;Anopheles_gambiae_AChE 
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MATERIALS AND METHODS 

Multiple sequence alignment of AchE from A.gambiae, 
A.albopictus and C.pipiens The stepwise procedure for 
performing the multiple sequence alignment is as follows 

 
 
 
 
MKTFFLLLIGTLAVG... 
&gt;Aedes_albopictus_AChE 
MKTFLLLIGTLAAG... 
&gt;Culex_pipiens_AChE 
MKTFFLLLIGTLAVG... 
 
Replace the sequence fragments with actual AChE sequences 
from the respective species. 
 
Step 2: Perform Multiple Sequence Alignment
ESPript itself is primarily a visualization tool rather than an 
alignment tool. For multiple sequence alignment, use other 
alignment tools like Clustal Omega, MAFFT, MUSCLE, or T
Coffee before visualizing the alignment using ESPript 
et al. 2003 and Sievers etal. 2018).
 
Using Clustal Omega 
 
 Go to the Clustal Omega web server.
 Upload your FASTA file containing the three AChE 

sequences. 
 Perform the alignment. 
 Download the resulting alignment in FASTA format.
 
Once the sequence alignment was performed u
above methods, the results were visualized in ESPript.
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Replace the sequence fragments with actual AChE sequences 

Perform Multiple Sequence Alignment 
ESPript itself is primarily a visualization tool rather than an 
alignment tool. For multiple sequence alignment, use other 
alignment tools like Clustal Omega, MAFFT, MUSCLE, or T-
Coffee before visualizing the alignment using ESPript (Gouet 

Sievers etal. 2018). 

Go to the Clustal Omega web server. 
Upload your FASTA file containing the three AChE 

Download the resulting alignment in FASTA format. 

Once the sequence alignment was performed using one of the 
above methods, the results were visualized in ESPript. 
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Step 3: Visualizing the Alignment with ESPript 
ESPript generates publication-quality figures from aligned 
sequences. To visualize your 
 
AChE alignment: 
 
 Access ESPript: 
 Go to the ESPript web server. 
 Upload Alignment: 
 Paste the FASTA-formatted multiple sequence alignment 

(from Clustal 
 Omega,) into the text box provided on the ESPript web 

server. 
 Configure Settings: 
 Select visualization options (e.g., coloring schemes, 

formatting, conservation scores, numbering styles). You 
can choose options such as highlighting conserved 
residues, showing secondary structure information, or 
adjusting the display to emphasize sequence conservation. 

 Generate Output: 
 Click Submit or the corresponding button to generate the 

alignment 
 visualization. 
 
Download the Output 
 
ESPript will generate the visualization as an image. PROTEIN 
MODELING USING ALPHAFOLD. Modeling proteins using 
AlphaFold 2.0, a deep learning-based tool developed by 
DeepMind, involves a complex series of steps that combine 
biological insights with advanced computational techniques 
(Jumper et al. 2021 and Akdel et al. 2021). Here is a detailed 
procedure for protein modeling using AlphaFold 2.0: 
 
Input Data Preparation 
 
The following steps are performed to generate the model: 
 Amino Acid Sequence: The primary input to AlphaFold 2.0 is 
the target protein&#39;s amino acid sequence. This sequence 
is a string of letters (from A to Z, representingthe 20 standard 
amino acids) representing the protein&#39;s primary structure. 
Here, the amino acid sequence corresponding to the crystal 
structure 6ary encoding for A. gambiae mutant AchE is 
provided. Template Structures (Optional): AlphaFold can use 
known 3D structures of homologous proteins (templates) for 
better prediction. These templates are retrieved from protein 
structure databases such as the Protein Data Bank (PDB) that 
shares maximum identity with the 6ary.  Feature Extraction: 
AlphaFold 2.0 also requires the extraction of various 
additional features, such as: Pairwise distances between amino 
acids, Predicted secondary structure information, Solvent 
accessibility predictions, etc. 
 
Alpha Fold &#39;s Deep Learning Model: Alpha Fold 2.0 
uses a deep learning model, specifically a transformer-based 
architecture, which consists of two main stages: Evoformer: 
This neural network module processes the multiple sequence 
alignments (MSA) and their associated features. The 
Evoformer utilizes a multi-layer attention mechanism to 
capture long-range dependencies in the protein sequence, 
effectively learning the evolutionary and structural information 
from the MSAs. Structure Module: The structure module 
converts the embeddings from Evoformer into 3D coordinates.  

This module predicts the 3D structure of the protein by 
iterating through various steps: Predicts distances between 
pairs of residues, Predicts the local geometry of each residue, 
including angles and torsions, Generates 3D coordinates for 
the entire protein chain. This module also refines the structure 
iteratively using the embeddings and evolutionary features 
generated by the Evoformer. 
 
Prediction of the Final Protein Structure: The final 
predicted protein structure is generated in the following steps: 
Energy Minimization: After the initial structure is predicted, 
AlphaFold performs energy minimization to refine the 
geometry of the protein structure. This helps in optimizing 
bond angles, bond lengths, and the overall 3D fold. Confidence 
Score (pLDDT): AlphaFold generates a confidence score for 
the prediction, called the predicted Local Distance Difference 
Test (pLDDT). This score ranges from 0 to 100 and measures 
how confident the model is in the accuracy of its structure 
prediction. A score above 70 is generally considered high 
confidence, while scores below 50 indicate regions of lower 
confidence. 
 
5. Post-processing the Prediction Once the model predicts the 
structure, some additional processing steps may be applied: 
Refinement and Validation: The predicted structure is further 
validated by checking the stereo chemical quality of the model 
(Pradeepkiran et al. 2021). This involves examining factors 
like: Ramachandran plot: Evaluates the distribution of dihedral 
angles of the amino acid residues. Clash scores: Ensures that 
atoms within the protein are appropriately spaced. 
Visualization: The final 3D structure can be visualized using 
molecular visualization software like Py MOL, Chimera, or 
VMD. 
 
ACTIVE SITE PREDICTION USING CAVER 
 
Input Structure: Active site prediction using CAVER is a 
computational approach used to identify and analyze tunnels 
and pockets in enzyme structures, which are crucial for 
substrate access and product release. This method is 
particularly useful in enzyme engineering and understanding 
enzyme-substrate interactions (Heinamann et al. 2021 and 
Vavra et al. 2023). CAVER is a tool that helps predict and 
analyze tunnels and cavities in enzyme structures, which are 
essential for understanding how substrates access buried active 
sites. This is crucial for enzymes with complex structures 
where direct access to the active site is not apparent. CAVER 
requires a 3D protein structure, typically a PDB (Protein Data 
Bank) file. This structure can be experimentally determined 
via techniques like X-ray crystallography and NMR or 
generated computationally (e.g., via homology modeling). The 
crystal structure (PDB ID: 6ary) corresponding to A. gambiae 
AchE is given as the query input structure.  
 
Preprocessing and Surface Calculation: The protein&#39;s 
3D structure is (PDB ID: 6ary) corresponding to A. gambiae 
AchE processed to identify the solvent-accessible surface. This 
is crucial because many channels or cavities that could serve as 
active sites are usually exposed to the solvent or are cavities 
within the structure. The algorithm calculates the solvent-
accessible surface area (SASA) and the surface pockets 
(Petreck et al. 2006). These pockets are potential binding sites 
or channels. 
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Channel Detection: The tool uses a geometrical approach to 
detect and visualize channels and cavities. It typically 
involves: Voronoi diagrams: Dividing the space into regions 
based on the positions of the protein atoms and identifying 
regions that may act as tunnels or channels. Grid-based 
analysis: CAVER often uses a 3D grid to analyze the 
proteinstructure and identify interconnected cavities that may 
form pathways. 
 
 Pathway algorithm: CAVER employs algorithms to find 
paths through the protein&#39;s interior based on accessible 
spaces. It typically uses methods like the Dijkstra algorithm or 
breadth-first search to compute the most probable paths from 
the protein&#39;s surface to internal cavities or channels. 
Pathway Characterization:  Once potential channels are 
identified, CAVER characterizes them based on several 
factors: 
 
Size of the channel: Identifying whether the pathway is large 
enough to allow the passage of molecules (e.g., small ions, 
water, or substrates). o Connectivity: Determining how 
connected the cavity is to other parts of the protein or whether 
it opens directly to the exterior. Functional relevance: Using 
knowledge of the protein (e.g., enzyme activity, ligand 
binding) to predict whether a particular cavity or channel is 
functionally important, such as being an active site for 
catalysis or a ligand-binding site. 
 
Surface and Interior Analysis: CAVER doesn&#39;t just 
identify external channels but also investigates deeper, internal 
cavities that might serve as transport or catalytic pathways. 
These internal channels are often of interest in the context of 
enzymes or other functional proteins. The software can 
distinguish between buried channels (important for enzymatic 
action or molecular transport) and surface-exposed channels 
(important for ligand or substrate binding). 6. Visualization: 
CAVER provides a visualization of the predicted active sites 
or channels, typically in3D. This is done by rendering the 
protein structure and displaying the channels as tunnels or 
cavities with varying colors or transparency, making it easier 
to identify possible active sites visually. The visualization is 
often enhanced with a probe sphere method, where a sphere is 
moved through the identified channel to simulate the diffusion 
of molecules (like water or small ions) through the cavity. 
 
MOLECULAR DOCKING ANALYSIS: Molecular docking 
is a computational technique used to predict the preferred 
orientation of asmall molecule (ligand) when bound to a target 
protein, which is crucial in drug discoveryand design. This 
method helps in understanding the interaction between the 
ligand and the. protein, estimating binding affinities, and 
facilitating virtual screening of potential drugcandidates 
(Pawar et al. 2023 and Chaudhary et al. 2024). All compounds 
attained from the PubChem database were employed for 
docking studies to confine the number of potentialhits from the 
virtual screening. Firstly, the open babel software 3-1-1 was 
used to convert the SDF format ofeach ligand to 3D PDB 
format (O’Boyle et al. 2011). AutoDock Vina was employed, 
the grid box was placed in the active site of the 6ary protein, 
and the docking process was initiated (Rauf et al. 2015). 
Lamarckian Genetic Algorithm was selected, and 10 poses 
were generated. During the docking, the protein structure was 
kept rigid while all the ligand&#39;s binding modes were 
maintained to be rotated and flexible during the binding. In the 
post-docking procedure, the output docking poses were 

analyzed to predict their binding affinity and the best poses 
were selected. The ligands with better docking scores 
(kcal/mol) values were ranked accordingly, and the STD 
docking score was chosen as a reference. A total of 21 ligands 
were found to have the best docking score and were ranked in 
the order. The compounds interaction with the AchE active site 
were assessed using theDiscovery Studio visualizer and Pymol 
(Lill et al. 2011 and Yuan et al. 2017). The docking and results 
interpretation are done using previously described methods. 
 

RESULTS AND DISCUSSION 
 
Multiple Sequence Alignment (MSA) is a bioinformatics 
method for aligning three or more biological sequences (DNA, 
RNA, or protein sequences) to identify regions of similarity 
and infer functional, structural, or evolutionary relationships. 
MSA is fundamental for analysing homologous sequences, 
comparing genomes, and discovering evolutionary patterns. 
Importance of Multiple Sequence Alignment 1. Understanding 
Evolutionary Relationships: 
 
MSA allows the comparison of sequences from different 
species or within gene families to identify conserved regions 
and infer phylogenetic relationships. Conserved sequences 
across species often indicate common ancestry and 
evolutionary conservation, while mutations provide insights 
into evolutionary divergence. 2. Identifying Conserved 
Functional Regions: Functional elements in biological 
sequences (such as active sites in proteins or regulatory motifs 
in DNA) are often conserved through evolution.  MSA helps 
pinpoint these conserved regions, which can reveal their 
biological roles or importance in the molecule&#39;s structure 
and function.  3. Structural and Functional Prediction: 
Sequence alignment identifies patterns of conservation and 
variation that can help predict the structure or function of a 
gene or protein. Homologous sequences aligned using MSA 
can help model the three-dimensional structure of proteins by 
aligning them with sequences of known structure. 
 
Identifying Mutation Impact: 9. Comparing homologous 
sequences allows researchers to assess the effects of mutations 
on function or structure. Mutations in conserved regions are 
more likely to be deleterious or disease-associated.  
 
Facilitating Drug Discovery: In structural biology and drug 
discovery, MSA can highlight conserved binding sites or 
structural domains across homologous proteins, allowing the 
design of drugs targeting shared regions in related pathogens 
or disease mechanisms.  6. Genome Assembly and Annotation: 
MSA supports the assembly of sequenced DNA fragments by 
aligning them to reference genomes, helping resolve complex 
repeats or overlapping sequences. 7. Detecting Gene 
Duplication and Horizontal Gene Transfer: By comparing 
multiple sequences, MSA can reveal gene duplication events, 
gene losses, or horizontal gene transfer across different 
species. 8. Studying Population Genetics: MSA allows 
researchers to align individual sequences from populations to 
detect variations, such as SNPs (single nucleotide 
polymorphisms), which are important for understanding 
genetic diversity, evolutionary history, and disease 
susceptibility. Applications of MSA MSA is applied across 
various fields of bioinformatics and molecular biology 
(Ibrahim et al. 2024 and Ishaeq et al. 2019) Phylogenetics and  
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Evolutionary Biology: Understanding evolutionary 
relationships and constructing phylogenetic trees. Structural 
Biology: Predicting structural features and 3D structure of 
proteins by aligning homologous sequences. Strengthening 
genetic surveillance to monitor resistance mutations in 
mosquito. 
 

 

 
 

Figure 2. Alphafold-based model of A. albopictus 
 

 
 

STRUCTURE VALIDATION USING G-FACTOR: The 
G-factors mentioned in the document are statistical measures 
used to assess the quality of a protein structure, particularly in 
the context of its conformational stability. They 
provideinsights into the geometry of the protein&#39;s 
backbone and side chains (Yasuda et al. 2022). Here’s a 
breakdown of their significance: 1. G-factors Overview: G-
factors are calculated for dihedral angles (phi, psi, chi1, chi2, 
etc.) and other structural parameters. They help evaluate how 
well the proteinstructure adheres to expected geometric norms. 
2. Interpretation of Values: Positive G-factors: Indicate that the 
conformation is more favorable than average, suggesting that 
the residues are stable and energetically favorable. o Negative 
G-factors: Suggest that the conformation is less favorable, 
indicating potential steric clashes or unfavorable interactions 
within theprotein structure.  

Overall Assessment:  The overall G-factor summarizes the 
protein&#39;s structural quality. A higher overall G-factor 
indicates a more stable and well-formed structure, while 
alower value may suggest issues that could affect the 
protein&#39;s function or stability. 4. Use in Validation: G-
factors are often used in conjunction with other validation 
tools (like Ramachandran plots) to assess the reliability of 
protein models, especially thosegenerated through 
computational methods or homology modelling Based on the 
analysis, we found that out of 10, 7 g-factors are positive, and 
only threeg-factors are negative, which indicates the good 
quality of the modeled protein structure. C. pipiens modeled 
structure The Alpha Fold-generated model of the 
Acetylcholinesterase protein (UniProt ID: Q86G68) provides a 
predicted three-dimensional structure based on the 
protein&#39;s amino acid sequence. Model Confidence: The 
model includes a confidence score known as pLDDT 
(predicted. Local Distance Difference Test), which ranges 
from 0 to 100. A higher score indicates greater confidence in 
the predicted structure. For example, regions with a pLDDT 
greater than 90 are considered to have very high confidence, 
while scores between 70 and 90 indicate moderate confidence. 
Regions with lower scores may be less reliable and 
unstructured in isolation. 
 

 
 

Figure 4. Alphafold-based model of C. pipiens 
 

 
 
Frequent Codes: The code W245 appears most frequently 
across multiple tunnels, indicating it may be a significant 
marker or trait in the study context. In addition, W245 which is 
found in the active site has the ability to interact with the 
inhibitor. Other frequently occurring codes include Y291, 
S280, and D233, which also appear in several tunnels. 
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Potential Implications: The presence of certain codes in 
multiple tunnels could suggest common traits among 
populations, while unique codes in specific tunnels might 
indicate localized adaptations or variations. Current 
antimalarial drug development research has two main 
objectives: (1) finding candidates that can target resistant 
strains and finding extremely potent prospects that can be 
given in shorter treatment durations (Belete et al. 2020 and 
Kumar et al. 2020). Using partner medications, in which 
artemisinin or a derivative is combined with another 
medication to provide the desired therapeutic effect, is one of 
the remedies found for this problem. Still, more study is 
required to determine whether the treatment may be shortened 
or reduced to a single dose. Furthermore, as hypnozoites of P. 
vivax and P. ovale can cause several malaria episodes in a 
single infection, candidates that may target both the asexual 
and sexual stages and these parasites are exciting (Noviyanti et 
al. 2022). Recently, artemisinin-hybridized compounds) have 
been tested against malaria to address artemisinin resistance. 
Dihydroartemisinyl-chalcone esters, for instance, are effective 
against strains resistant to and Temperature facilities in 
tropical regions where malaria is frequently endemic. Another 
groupOf intriguing antimalarial candidates includes hybrids of 
artemisinin and other natural products, such as homoegonol 
and thymoquinone, which have high antiplasmodial efficacy 
and potency, demonstrating better activity than chloroquine 
(Quadros et al. 2021). 
 

 
 
Aminoquinol: Docking Score: -9.6 kcal/mol This compound 
also exhibits a very strong binding affinity, indicating it could 
be another promising candidate for targeting A. gambiae. A. 
albopictus 1. Cotecxin: Docking Score: -8.6 kcal/mol  
Cotecxin demonstrates the best binding affinity for A. 
albopictus, suggesting it may be particularly effective against 
this species. 
 
Hydroxychloroquine Sulfate: Docking Score: -8.6 kcal/mol 
This compound ties with Cotecxin for the best score, 
indicating it also has a strong potential for interaction with the 
target proteins in A. albopictus.  
 

LIGAND-PROTEIN INTERACTION OF DOCKED 
COMPLEXES: A. gambiae the crystal structure of 
A.gambiae AchE (PDB ID: 36ary) and modelled Ach Efro 
A.albopictus and C.pipiens was employed for docking studies. 
2,2-difluoro-1-(1-(pentane-3-yl)-1H-pyrazol-3-yl) ethan-1-one, 
when docked with mutant AchE, showed it has similar 
interaction, which was observed in the crystal structure. For 
instance, Tyr489, Tyr291, Tyr245 and Gly278 formed 
hydrogen bonds with the protein. Followingly, with the 3-
methychloroquine, Tyr291 and Tyr489 form the hydrogen 
bond interaction. Similar hydrogen bond interaction with 
Tyr291 was found in aminoquinol docked A.gambiae AchE 
protein. Based on the docking score, it is evident that these two 
compounds, 3-methychloroquine and aminoquinol could be 
potentially used as drug molecule for resistant GMO 
A.gambiae. 
 

 
Figure 8. 3D (A) and 2D (B) interaction of 3-methylchloroquine 

with mutant AchE of A. Gambiae 
 
The docking studies of new compounds against mutant 
acetylcholinesterase (AchE) have shown promising results in 
the search for effective antimalarial treatments, particularly in 
the context of increasing resistance to traditional therapies like 
artemisinin. This discussion will explore the significance of 
these findings, comparing the efficacy of novel compounds 
with that of artemisinin. Acetylcholinesterase is an enzyme 
that plays a crucial role in the nervous system of insects, 
including malaria vectors such as Anopheles gambiae. 
Mutations in the AchE gene can leadto resistance against 
certain insecticides, complicating malaria control efforts. 
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The emergence of resistance to artemisinin, the cornerstone of 
malaria treatment, has prompted researchers to explore 
alternative compounds that can effectively target resistant 
strains of the malaria parasite and its vectors. Molecular 
docking is a computational technique that predicts the 
preferred orientation of a ligand (in this case, a potential drug) 
when bound to a target protein (like mutant AchE). This 
method allows researchers to evaluate the binding affinity and 
interaction patterns of various compounds, providing insights 
into their potential efficacy as therapeutic agents. New 
Compounds vs. Artemisinin   Efficacy Against Mutant AchE: 
Recent studies have identified new compounds, such as 2,2-
difluoro-1-(1- (pentane-3-yl)-1H-pyrazol-3-yl) ethan-1-one, 
which have shown significant binding interactions with mutant 
AchE. These compounds demonstrated similar or even 
superior docking scores compared to artemisinin derivatives, 
indicating a strong potential for inhibiting the enzyme&#39;s 
activity , . In contrast, artemisinin primarily targets the malaria 
parasite itself rather than the vector&#39;s AchE. While 
artemisinin is effective against the parasite, its efficacy is 
compromised by the development of resistance, necessitating 
the exploration of alternative compounds that can target both 
the parasite and its vectors. 
 
The new compounds often exhibit unique mechanisms of 
action that differ from those of artemisinin. For instance, they 
may form specific hydrogen bonds with key residues in the 
AchE active site, disrupting its function more Effectively than 
artemisinin, which relies on reactive oxygen species to exert its 
effects on the parasite , The ability of these new compounds to 
interact with the AchE of resistantstrains suggests that they 
could be used in combination therapies, potentially enhancing 
the overall efficacy of malaria treatment regimens. The 
rational design of new compounds based on structural 
information from docking studies has opened avenues for 
developing drugs with improved pharmacokinetic properties 
and safety profiles. This is particularly important in light of the 
challenges posed by artemisinin resistance and the need for 
novel therapeutic strategies .The identification of compounds 
that can effectively inhibit mutant AchE could lead to the 
development of new insecticides or combination therapies that 
enhance the effectiveness of existing antimalarial drugs. 
 

The exploration of new compounds through molecular docking 
against mutant acetylcholinesterase represents a significant 
advancement in the fight against malaria, particularly in the 
context of rising resistance to artemisinin. By targeting the 
AchE of resistant strains, these compounds offer a promising 
alternative or complement to traditional therapies. Continued 
research in this area is essential to develop effective malaria 
control and treatment strategies, ensuring that we can combat 
both the parasite and its vectors effectively. The integration of 
computational techniques like molecular docking into drug 
discovery processes will be crucial in identifying and 
optimizing new therapeutic candidates. From the attained 
results, this study compares docking scores for three mosquito 
species: A. gambiae, A. albopictus, and C. pipiens. A. gambiae 
exhibited the broadest range of docking scores (-9.6 to -5.8 
kcal/mol), indicating significant variability in binding 
affinities, suggesting a diverse interaction profile with the 
tested compounds. A. albopictus showed a narrower range (-
8.2 to -5.3 kcal/mol), while C. pipiens had the narrowest range 
(-6.2 to -4.3 kcal/mol), indicating less variability in binding 
affinities. The strongest binding affinities for A. gambiae were 
observed with 3-Methylchloroquine (-9.5 kcal/mol) and 
Aminoquinol (-9.6 kcal/mol), highlighting their potential as 
effective candidates for targeting this species. Additionally, 
structural validation using the Ramachandran plot confirmed 
the reliability of the modelled structures for further studies, 
and CAVER analysis revealed that A. gambiae had the highest 
number of tunnels (8), potentially linked to a mutation in the 
AchE protein, which may influence its biological activity. 
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