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The problem of Magneto-Marangoni-convection is investigated in a two layer system comprising an
incompressible electrically conducting fluid saturated porous layer over which lies a layer of the same
fluid in the presence of a vertical magnetic field.  The lower rigid surface of the porous layer and the
upper free surface are considered to be insulating to temperature perturbations.  At the upper free
surface, the surface tension effects depending on temperature are considered. At the interface, the
normal and tangential components of velocity, heat and heat flux are assumed to be continuous.  The
resulting eigenvalue problem is solved exactly for both parabolic and inverted parabolic temperature
profiles and analytical expressions of the Thermal Marangoni Number   are obtained.   Effects of
variation of different physical parameters on the Thermal Marangoni Number for both profiles are
compared.
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INTRODUCTION
The existence of fluid layer adjacent to a layer of a fluid saturated porous medium (composite layer) is a common occurrence in
the natural, industrial environments and also,  in some engineering problems like thermal energy storage system, solar collector
with porous absorber, porous metal bearings(Morgan and Cameron 1957, Shir and Joseph 1966, Rhodes and Rouleau 1986),
Porous rollers (Tao and Joseph 1962), porous layer insulation consisting of solid and  pores (Masuoka 1974), in the study of blood
flow in lungs (Fung and Sobin 1969, Fung 1974, Tang and Fung 1975) and in the study of synovial joints (Rudraiah et al 1998)
and so on.  In many situations particularly in Geophysics, Astrophysics, and in some industrial problems maintaining a uniform
temperature gradient is limitation and non-uniform temperature gradient  is a reality.  In that case stability or instability of a fluid
in the presence of a nonlinear temperature profile is of practical importance and has not been given much attention.  Here we
investigate the effect of Parabolic and inverted Parabolic temperature gradient on  Marangoni convection in a composite layer in
the presence of vertical magnetic field.  However some literature is available on the effects of non uniform temperature gradients
on Marangoni convection  in single horizontal  fluid and  porous layers separately. Nanjundappa Rudraiah and Pradeep G
Siddheshwar (2000) have investigated the effect of non-uniform basic temperature gradients on the onset of Marangoini
convection in a horizontal layer of a Boussinesq fluid with suspended particles. It is observed that the fluid layer with suspended
particles heated from below is more stable compared to the classical fluid layer without suspended particles. The problem has
possible applications in microgravity situations. Shivakumara et al. (2002) have investigated the effect of different basic
temperature gradients on the onset of ferroconvection driven by combined surface tension and buoyancy forces is studied. The
results indicate that the stability of Rayleigh-Bernard-Marangoni ferroconvection is significantly affected by basic temperature
gradients and the mechanism for suppressing or augmenting the same is discussed in detail. It is shown that the results obtained
under the limiting conditions compare well with the existing ones.  Melviana Johnson Fu et al. (2009) have studied the effect of
six different non-uniform basic state temperature gradients on the onsets of Marangoni convection in a horizontal micropolar fluid
layer  bounded below by a rigid plate and above by non-deformable free surface subjected to a constant heat flux.  They used
Rayleigh Ritz technique to solve the resulting eigenvalue problem and discussed the influence of the various parameters on the
onset of Marangoni convection.   Siti Suzillian Putri Mohamed Isa et al. (2009) have investigated the effect of six different non-
uniform basic temperature gradients on the onset of Marangoni convection in a horizontal layer with a free-slip bottom heated
from below and cooled from above.  They solved the resulting the eigenvalue problem using single-term Galerkin expansion
procedure and have discussed the effect of the various parameters on the onset of Marangoni convection.
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Coming to the single porous layers, Shivakumara et al. (2012) have investigated the effect of different forms of basic temperature
gradients on the criterion for the onset of convection in a layer of an incompressible couple stress fluid saturated porous medium is
investigated. It is shown that the principle of exchange of stability is valid, and the eigen value problem is solved numerically
using the Galerkin technique. The parabolic and inverted parabolic basic temperature profiles have the same effect on the onset of
convection. The combined effects of vertical magnetic field and nonuniform temperature profiles on the onset of steady Marangoni
convection in a horizontal layer of micropolar fluid are investigated by Mahmud et al. (2010). They obtained the closed-form
expression for the Marangoni number M for the onset of convection, valid for polynomial-type basic temperature profiles upto a
third order, is obtained by the use of the single-term Galerkin technique.

Formulation of the problem

Consider a horizontal two - component, electrically conducting fluid saturated isotropic sparsely packed porous layer of thickness

md underlying a two component fluid layer of thickness d with an imposed magnetic field intensity 0H in the vertical z –
direction. The lower surface of the porous layer is rigid and the upper surface of the fluid layer is free with the surface tension
effects depending on temperature.  Both the boundaries are kept at different constant temperatures.  A Cartesian coordinate system
is chosen with the origin at the interface between porous and fluid layers and the z – axis, vertically upwards.  The continuity,
solenoidal property of the magnetic field, momentum energy, magnetic induction equations are,
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Where the symbols in the above equations have the following meaning  , ,q u v w


is the velocity vector, H


is the magnetic

field, t is the time,  is the fluid viscosity,
2

2
p H

P p


  is the total pressure, 0 is the fluid density, p is the magnetic
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permeability,
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 is the ratio of heat capacities, pC is the specific heat, K is the permeability of the porous

medium, T is the temperature,  is the thermal diffusivity of the fluid,
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 is the effective magnetic viscosity and the subscripts m and f refer to the porous

medium and the fluid respectively.

The basic steady state is assumed to the quiescent and we consider the solution of the form,
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in the fluid layer and in the porous layer
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Where the subscript ‘b’ denotes the basic state.  The temperature  distributions   ,bT z   ,mb mT z are found to be
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In order to investigate the stability of the basic solution, infinitesimal disturbances are introduced in the form,
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Where the primed quantities are the perturbed ones over their equilibrium counterparts.  Now Equations (15) and (16) are
substituted into the Equations (1) to (10) and are linearised in the usual manner.  Next, the pressure term is eliminated from (3) and
(8) by taking curl twice on these two equations and only the vertical component is retained.  The variables are then non-

dimensionalised using d ,
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separate length scales are chosen for the two layers so that each layer is of unit depth.

In this manner the detailed flow fields in both the fluid and porous layers can be clearly obtained for all the depth ratios ˆ md
d

d
 .

The dimensionless equations for the perturbed variables are given by,
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We make the normal mode expansion and seek solutions for the dependent variables in the fluid and porous layers according to
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It is known that the principle of exchange of instabilities holds for magneto convection in both fluid and porous layers separately
for certain choice of parameters.  Therefore, we assume that the principle of exchange of instabilities holds even for the composite
layers.  In other words, it is assumed that the onset of convection is in the form of steady convection and accordingly we take
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note that, in total we have a 12th order ordinary differential equation and we need 12 boundary conditions to solve them.

Boundary conditions

The bottom boundary is assumed to be rigid and insulating to temperature so that at 0mz 

0, 0, 0m m
m

m m

w T
w

z z

 
  
 

(35)

The upper boundary is assumed to be free, insulating temperature so the appropriate boundary conditions at z d are,

2
2
22

ˆ0, , 0tw T
w T

z T z




         
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Where 0t T T    is the surface tension, here

0

t
T

T TT






    

At the interface (i.e., at 0, m mz z d  ), the normal component of velocity, tangential velocity, temperature, heat flux are

continuous and respectively yield following Nield (1977),

, , ,m m
m m m

m m

w Tw T
w w T T

z z z z
 

  
   

   
(36)

We note that two more velocity conditions are required at 0z  Since we have used the Darcy-Brinkman equations of motion for

the flow through the porous medium, the physically feasible boundary conditions on velocity are the following, at 0z  and

m mz d

2 2m
m m

m

w w
P P

z z
 
 

  
 

(37)

which will reduce to

2 2
2 2 2
2 22 2

3 3m m m
m m

m m m

w ww

z z K z z z


  

      
               

The other appropriate velocity boundary condition at the interface 0, m mz z d  can be,

22
2 2
2 22 2

m
m m m

m

ww
w w

z z
 

   
          

(38)

All the Twelve boundary conditions (35) to (38) are non-dimensionalised and are subjected to Normal mode expansion and are
given by

2 2(1) 0, (1) (1) 0, (1) 0,W D W M a D     

ˆˆ ˆ(0) (1), (0) (1),m m mTW W TdDW D W 

   2 2 2 2 2ˆˆ ˆ(0) (1)m m mTd D a W D a W  

        3 2 3 2 2 3 2ˆˆ ˆ(0) 3 (0) 1 1 3 1m m m m m m mTd D W a DW D W D W a D W     

ˆ(0) (1), (0) (1),m m mT D D     

 0 0, (0) 0, (0) 0m m m m mw D w D    (39)

The Equations (31) to (34) are to be solved with respect to the boundary conditions (39).

Exact Solution

The solutions of the Equations (31) and (33) are independent of  and m can be solved and expressions for W and mW can be

obtained as,

5440 Sumithra and Manjunatha, Effects of parabolic and inverted parabolic temperature gradients on magneto marangoni convection in a composite layer



     1 2 3 4( ) ( )W z ACosh z A Sinh z A Cosh z A Sinh z       (40)

         5 4 6 4 7 5 8 5m m m m m mW z A Cosh C z A Sinh C z A Cosh C z A Sinh C z    (41)

Where
2 24 4

,
2 2

Q Q a Q Q a
 

   
  and 1 3 1 3

4 5,
2 2

C C C C
C C

 
  and 1 2 3 4, , ,A A A A and

5 6 7 8, , ,A A A A are constants to be determined using the velocity boundary conditions of (39) , and the expressions for ( )W z

and ( )mW z are

     1 1 2 3( ) ( )W z A Cosh z a Sinh z a Cosh z a Sinh z         (42)

         1 4 4 5 4 6 5 7 5m m m m m mW z A a Cosh C z a Sinh C z a Cosh C z a Sinh C z      (43)

Parabolic Temperature profile

Following Sparrow et al. (1964), we consider a parabolic temperature profile of the form

  2 ( ) 2m m mh z z and h z z 
(44)

Substituting eq. (44) into the heat equations (32) and (34), the expressions for  and m are obtained as

 1 8 9 1( ) ( )z A a Coshaz a Sinhaz f z   
(45)

 1 10 11 1( ) ( )m m m m m m m mz A a Cosha z a Sinha z f z   
(46)

Where

 
 

 

 
 

 

1 122 2 2 2

1

3 2 2 322 2 2 2

2 4

( )
2 4

z
a Sinh z Cosh z Sinh z a Cosh z

a a
f z

z
a Sinh z a Cosh z a Sinh z a Cosh z

a a


   

 


   

 

       
   
   
  

 
 

 

 
 

 

4
4 4 5 4 5 4 4 422 2 2 2

4 4

1
5

6 5 7 5 7 5 6 522 2 2 2
5 5

2 4

( )
2 4

m
m m m m

m m

m m
m

m m m m
m m

z c
a Coshc z a Sinhc z a Coshc z a Sinhc z

c a c a
f z

z c
a Coshc z a Sinhc z a Coshc z a Sinhc z

c a c a

       
   
   
  

Thermal Marangoni number

The expressions of (1) and (1)W are substituted in  239 and an expression for 1M is obtained as
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   
 
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2 2 2 2
1 2 3

1
1 1

8 9 22 2 2 2
2

2 3 3 2
2 2 2 2 2

2 4
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2 4
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 

       (47)

The Inverted Parabolic temperature profile

For the inverted parabolic temperature profile we have

     2 1 ( ) 2 1m m mh z z and h z z   
(48)

Substituting eq. (48) into the heat equations (32) and (34), the expressions for  and m are obtained as

 1 12 13 2( ) ( )z A a Coshaz a Sinhaz f z   
(49)

 1 14 15 2( ) ( )m m m m m m m mz A a Cosha z a Sinha z f z   
(50)

Where
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3 2 2 322 2 2 2

2(1 ) 4

( )
2(1 ) 4

z
a Sinh z Cosh z Sinh z a Cosh z

a a
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
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 


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 
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      
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Thermal Marangoni Number

The expressions of (1) and (1)W are substituted in  239 and an expression for 2M is obtained as

 
 

 

2 2 2 2
1 2 3

2

2 1 2 3
12 13 2 2 2 22 2

4 4

( )

Cosh a Sinh a Cosh a Sinh
M

Sinh a Cosh a Sinh a Cosh
a a Cosha a Sinha

aa

       

     


     
     
    (51)

Where
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1
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a
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
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RESULTS AND DISCUSSION

The Thermal Marangoni numbers 1M and 2M obtained as a functions of the parameters are drawn versus the depth ratio d̂ and

the results are represented graphically showing the effects of the variation of one physical quantity, fixing the other parameters.

The fixed values of the parameters are ˆ 1, 0.7, 0.2T     and 2.0  The effects of the parameters ˆ, , ,a Q  and

 on the Thermal Marangoni number are obtained and portrayed in the figures 1 to 5 respectively.
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Fig. 1a&1b. The effects of a , horizontal wave number on the Thermal Marangoni numbers M for

ˆ50, 0.7, 2.0, 0.2Q      

The effects of ,a horizontal wave number on the Thermal Marangoni numbers for both the parabolic and inverted parabolic

profiles 1 2,M M are shown in Fig. 1a and 1b respectively for a = 1.0, 1.1 and  1.2.  The line curve is for a = 1.0, the thick dotted

curve for a = 1.1 and the thin dotted curve  for a = 1.3.   From  the figures it is clear that the Thermal Marangoni number for the

parabolic profile is more than that for the inverted parabolic profile.  At the value of ˆ 0.4d  , the effect of both the profiles are
neutral  and no effect of the horizontal wavenumber a on the thermal Marangoni number.   The curves for the three wavenumbers

for both the  profiles are converging upto the value of ˆ 0.4d  , where as the  three curves are diverging for the values of the

depth ratio ˆ 0.4d  .   For both the profiles, when the value of a , the horizontal wave number is increased, the Thermal

Marangoni numbers decrease and  its effect is to destabilize the system. That is, its effect is to advance  surface tension driven
convection.

Fig.2a & 2b.The effects of  on the Thermal Marangoni number M for

ˆ50, 0.7, 2.0, 1.0Q a    

The effects of the porous parameter
2
m

K

d
  on the thermal Marangoni numbers for the both the profiles are  exhibited in

the Figs.2a and 2b.   The curves are for 0.2, 0.3, 0.4  The line curve is for  = 0.2, the thick dotted curve for  = 0.3 and

the thin dotted curve for  = 0.4. The curves diverge for smaller values of the depth ratio, converge near ˆ 0.4d  and again

diverge and converge at ˆ 0.65d  and, as the depth ratio is further increased the curves diverge.  For smaller values of depth
ratio,  increase in the value in the value of the porous parameter increases the thermal Marangoni number,  where as for values of

the depth ratio ˆ0.4 0.65d  , the increase in the value of the porous parameter is to decrease the thermal Marangoni number

and again for values of ˆ 0.65d  the behavior  again reverses. So,    the onset of surface tension driven convection can either be
made faster or  delayed by choosing an appropriate value of the porous parameter depending on the  depth ratio. In other words
increasing the permeability of the porous matrix one can destabilize  and also stabilize the fluid layer system, this may be due to
the presence of magnetic field.

Figure 3 exhibits the effects of the magnetic field on the onset of convection by the Chandrasekhar number
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line curve is for Q = 50, the thick dotted curve for Q = 55 and the thin dotted curve  for Q = 60. From  the figures it is clear that
the Thermal Marangoni number for the parabolic profile is more than that for the inverted parabolic profile for a fixed value of
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depth ratio.  At the values of ˆ 0.3 0.4d to , the effect of both the profiles are neutral  and there is no effect of the Q on the

thermal Marangoni number.   The curves for the three Chandrasekhar numbers for  both the  profiles are converging upto the value

of ˆ 0.3d  , where as the  three curves diverge for for the values of the depth ratio ˆ 0.4.d  For both the profiles, when the

value of the Chandrasekhar number is increased, the Thermal Marangoni numbers increase and hence stabilize the system. That is

the Marangoni convection is delayed for the smaller values of d̂ that is for values of ˆ 0.3d  and ˆ 0.4.d 

Fig.3a & 3b.The effects of Q on the Thermal Marangoni number M for

ˆ0.7, 2.0, 1, 0.2a     

Fig. 4a & 4b.  The effects of ̂ on the Thermal Marangoni number M for

50, 0.7, 1, 0.2Q a     

The effects of the viscosity ratio ˆ m



 , which is the ratio of the effective viscosity of the porous matrix to the fluid viscosity

are displayed in Fig. 4a and 4b.   The line curve is for ˆ 2.0  , the thick dotted curve for ˆ 2.5  and the thin dotted curve  for

ˆ 3.0.  The curves diverge and again converge between the values of depth ratio ˆ0 0.4.d  The curves are diverging  for

the values of the depth ratio ˆ 0.4d  for both the profiles and the behavior of the change in the viscosity ratio reverses.   Increase
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in the value of the viscosity ratio increases the thermal Marangoni number for the values of depth ratio ˆ0 0.4.d  Whereas

the same  decreases the thermal Marangoni number for ˆ 0.4.d  The effect of the viscosity ratio   is to stabilize the system for
smaller values of the depth ratio, while the effect of the  same is to destabilize the system for later values of the depth ratio.

Fig.5a & 5b.The effects of  on the Thermal Marangoni number M for

ˆ50, 2.0, 1, 0.2Q a    

Figures 5a and 5b depict the effects of  , the porosity, on the Thermal Marangoni numbers 1 2,M M for the parabolic and

inverted parabolic profiles respectively.   The line curve is for 0.7  , the thick dotted curve for 0.8  and the thin dotted

curve  for 0.9.  For the both the profiles, upto the value of depth ratio ˆ 0.4d  there is no effect of porosity on the thermal

Marangoni number.  For the values of the depth ratio ˆ 0.4d  the curves are diverging and for a fixed  value of depth ratio,
increase in the  value of porosity decreases the thermal Marangoni number, that is to destabilize the system.   In other words the
increase in  the void volume of the porous layer  decreases the thermal Marangoni number and hence destabilizes the system.

Conclusion

The behavior of the system is unaltered for the both the Parabolic and Inverted Parabolic profiles.  For smaller values of depth
ratio of the composite layer, the increase in the values of  the Porous parameter  ,  the Chandrasekhar number Q,   the viscosity

ratio ̂ and the decrease in the value of horizontal wave number a, increases   the thermal Marangoni number, that is to stabilize

the system for both the parabolic and inverted parabolic temperature profiles and hence to delay the Surface tension driven
convection.   For larger of depth ratio of the composite layer,  the increase in the values  of   the Porous parameter  ,  the

Chandrasekhar number Q,  and the decrease in the values of Horizontal wave number ‘a’ ,   the viscosity ratio ̂ and   the

porosity  increases the thermal Marangoni number for both the parabolic and inverted parabolic temperature profiles, hence

their effect is to delay the surface tension driven convection i.e., to stabilize the system.
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