

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 6, Issue, 05, pp.6622-6626, May, 2014 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

REVIEW ARTICLE

DISINFECTION AND STERILIZATION TECHNIQUES OF OPERATION THEATRE: A REVIEW

Jyoti S. Kabbin, Shwetha, J. V., *Sathyanarayan, M. S. and Nagarathnamma, T.

Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore – 560002, India

ARTICLE INFO

ABSTRACT

Article History: Received 05th February, 2014 Received in revised form 10th March, 2014 Accepted 15th April, 2014 Published online 20th May, 2014

Key words:

Sterilization, Disinfection, Fogging, Operation Theatre. An Operation Theatre (OT) complex is the heart of any surgical hospital. The outcomes of surgical interventions depend on a range of factors like- Good surgical skills, scientific design of the OT, proper sterilization/ disinfection techniques and infection control practices. A well equipped OT with the above mentioned factors generally results in fewer Hospital Acquired Infections (HAIs). The present article lays emphasis on the various methods of sterilization and disinfection presently available. A variety of sterilants and disinfectants are being used in health care facilities across the world. Merits and demerits of various currently used sterilization and disinfection techniques have been discussed. Of the available techniques for disinfection of OT, fumigation using formaldehyde is no longer recommended. Fogging has widely been accepted as an alternate method as it is less labor intensive and quicker and poses minimal health hazard to the health care personnel. Microbiological sampling and surveillance of OT is also recommended to prevent HAIs.

Copyright © 2014 Jyoti S. Kabbin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The Centre for Disease Control (CDC) defines healthcareassociated infections (HAIs) as infections that patients acquire during the course of receiving treatment for other conditions or health careworkers (HCWs) acquire while performing their duties withina health care settings. The degree of concern regarding the inanimate environment as a source of HAI has changed markedly over the years. HAIs is caused by organism from inanimate environment depends upon many factors. The prevention of HAI depends upon several factors including effective cleaning, sterilization and disinfection procedures, performed carefully with goal of minimizing contamination by pathogens (http://www.cdc.gov/ncidod/dhqp/healthDis.html;

Sax and Pittet 2002; Blot *et al.*, 2009). In the present article, special emphasis is laid on cleaning, disinfection and sterilization techniques used in the operation theatre.

Operation Theatre

An Operation Theatre (OT) complex is the heart of any surgical hospital. (Dorsch and Dorsch 1999) Good surgical skills have to be supported by scientific design of OT in predicting good outcomes. A modern operation theatre must fulfill the basic architecture with four zones of Outer, Restricted, Aseptic and Disposal zones with adequate ventilation. (Bridgen 1988)

*Corresponding author: Sathyanarayan, M. S.

Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore – 560002, India. Few of the significant points with regard to the OT are: (Harsoor and Bhaskar 2007; Sapna *et al.*, 2011; Fridkin *et al.*, 1996; ESCRS Endophthalmitis Study Group 2007)

- 1. The OT should have an efficient Heating, Ventilation and Air Conditioning (HVAC) system, which can control the temperature, humidity, degree of microbial and dust contamination.
- 2. Positive air pressure of 5 cm of H_2O from the 2 ceiling downwards and outwards is maintained in the OT to ensure the airflow from the OT to the outside. Interchange of air movement between one OT and another is to be avoided.
- 3. Laminar air flow ensures the reduction of bacterial load in the environment. Laminar air flow fitted with High Efficiency Particulate Air (HEPA) filters which are effective in ensuring removal of particles more than 0.3 μ should be commissioned to ensure the supply of filtered air within the OT. The air exchange in an OT is maintained at 20 30 per hour.
- 4. The temperature within the OT is to be maintained between $18 24^{\circ}$ C and the humidity between 50 55%.
- 5. The movement of sterile and contaminated items between the central supply sterile department (CSSD) and OT should be planned in such a way that they do not cross the path of each other. Dedicated lifts or closed trolleys should be provided for sterile and unsterile items.
- 6. Management of biomedical waste (BMW) conforming to local and national guidelines for segregation, transportation and treatment of BMW.

In the operation theatre, the source of infection may be either endogenous (from the patient himself) or exogenous from the theatre environment. To prevent these infections the following techniques are generally used in the operation theatre.

General cleaning

Cleaning is the removal of all foreign material (dirt and organic) from the object being reprocessed. Two key points of cleaning are friction to remove foreign matter and fluids to remove or rinse away contamination. Spot cleaning of walls and ceiling should be undertaken as needed every day. Open shelves need to be cleaned daily using detergent while closed cabinets may be cleaned once weekly. The floor should ideally be sprayed and wet vacuum pick up used after each surgical procedure and at the end of the day schedule. (Sapna et al., 2011) The air conditioning (AC) ducts are mechanically cleaned using robotic machines, wet vacuum with detergent or by fogging with approved disinfectants. Cleaning may be achieved either by manual or mechanical means. Manual cleaning is accomplished by the use of water, detergents and mechanical action. Detergent is essential to remove and dissolve proteins and oil that can reside on instruments and equipment after use.

Mechanical cleaning involves application of ultrasonic cleaners or washers/disinfectors.

- Washing machine gives cold rinse followed by a hot wash at 71° C for 2 minutes. This is followed by 10-second hot water rinse at 80-90° C and then by drying by a heater or a fan at 50-75°C
- Washer/disinfector is used for anesthetic equipment. It runs a cycle of washing and cleaning plus a 2-minutes cycle with water at 80-100° C and with a detergent solution Ultrasonicator is sophisticated and expensive equipment. It uses high power output of 0.44 W/cm³ and dislodges all organic matter. (Rutala and Weber 2012; Miller *et al.*, 1993; Ransjo *et al.*, 2001).

Disinfection of items used in OT

Medical and surgical devices based on the risk from contamination of a patient are classified according to Spaulding classification in to 'Critical', 'Semi critical' and 'Non critical'. CDCmodified the same by adding another category 'environmental surfaces' which can be further divided in to medical equipment surfaces (e.g., knobs or handles on haemodialysis machines, x-ray machines, instrument carts, and dental units) and housekeeping surfaces (e.g., floors, walls and tabletops). (Spaulding 1968; Spaulding 1970; Spaulding 2001; Favero and Bond 2001; Schulster and Chinn 2003) Based on Modified Spaulding's classification, items used in OT and their decontamination techniques can be listed as mentioned in Table – 1.

The disinfectant used for the treatment of devices and surfaces not requiring sterilization are classified by Spaulding in to "High-level", "Intermediate-level" and "low-level". The basis for these levels is that microorganisms can usually be grouped according to their innate resistance to a spectrum of physical and chemical germicidal agents. The levels of disinfection and their spectrum of action has been depicted in the following table (Table – 2). (Rutala and Weber 2012; Spaulding 1971; Spaulding 2001)

Sterilization of items used in OT

Sterilization destroys all microorganism including spores on the surfaces of an article or fluid to prevent pathogen transmission associated with the use of that item. A number of procedures are followed for the sterilization of delicate, heat labile equipment. These include exposure to:

S.No.		Non critical	Semicritical	Critical
1	Definition	Items that come in contact with normal or intact skin		Items that penetrate sterile areas such as body cavities and the vascular system
2	Items	Wall, floor, ceiling, furniture, sink, blood pressure cuffs, crutches, bed rails, linens	Respiratory equipment, flexible endoscopes, laryngoscopes, spatula, endotracheal	Surgical instruments, cardiac, intravascular, urinary catheters, implants, ultrasound
		mens	tube, thermometer, similar instruments	probes which are introduced into body cavities and vascular system
3	Decontamination	Cleaning and low level disinfection	Cleaning and High level disinfection or sterilization	Cleaning and Sterilization

Table 1. Decontamination techniques for items used in areas according to risk involved

Table 2. Levels	of disinfection a	and spectrum	of action
-----------------	-------------------	--------------	-----------

			Leve	l of disinfection		
		High		Intermediate		Low
1	Types	Boiling	Chlorine	containing	compounds	
		Moist heat at 70-100° C	(e,g.,Sodium	hypochlorite)		
		Chemical				
2	Representative agents	Formaldehyde,	Iodophors,			Quaternary ammonium compounds,
		Glutaraldehyde 2% for 20 min,	Alcohols,			Some phenolics,
		Orthophthaladehyde (OPA) for 5-12 min,	Some phenol	ics		Some Iodophors.
		Peracetic acid 0.2-0.35% for 5 min,				
		Hydrogen peroxide 6%-7.5% for 20-30min				
3	Scenario of usage	Sutures, Sharp instruments including razor	Head of the microscope (Alcohol mixture)		ohol mixture)	Hand rub in between cases
		blade (Glutarldehyde),				(cetrimide), Envirnomental surfaces-
		Cryoprobe,				housekeeping surface Microscope
		Vitrectomy cutter,				except lens (15% cetrimide and 3%
		Cauterywire (formaldehyde)				chlorhexidinegluconate)
4	Cidal activity against	Vegetative bacteria, Mycobacteria,	Vegetative ba	acteria, Mycobac	eteria,	Vegetative bacteria,
		Spores, Fungi,	Fungi,			Enveloped (Lipid) medium sized
		Enveloped (Lipid) medium sized viruses	Enveloped/Se	ome Nonlipid vi	ruses	viruses, Some Nonlipid viruses
		Nonlipid and small size viruses				

- a) Low temperature steam and formaldehyde
- b) Ethylene oxide
- c) Gas plasma.

The following table (Table -3) reviews sterilization technologies used in health care makes recommendations for their optimum performance in the processing of medical devises. (Rutala and Weber 2008; Association for the Advancement of Medical Instrumentation: 2010).

exposure standard for Formaldehyde that limits an 8-hour timeweighted average exposure concentration of 0.75ppm. Fumigation of OT using formalin is not recommended by the CDC. (Sapna *et al.*, 2011; Ananthanarayan *et al.*, 2013)

b) Baccilocidrasant

A newer and effective compound in environmental decontamination with very good cost/benefit ratio, good

Sterilization Method	Advantages	Disadvantages
Steam	Nontoxic,	Deleterious for heat sensitive instruments Microsurgical
	Cycle easy to	instruments damaged by repeated exposure May leave
	Control, monitor and rapidmicrobicidal action,	instrument wet causing them to rust Potential for burns
	Penetrate medical packing and lumens of devices	
Hydrogen peroxide, gas plasma	Nontoxic	Cellulose(paper), linens and liquid cannot be processed
	Cycle time is≥28minutes	Endoscope or medical device restriction based on luminal size
	Used for heat and moisture sensitive items	Requires synthetic packing and special container
	Compatible with most medical devices	
	Requires electrical outlet	
100% Ethylene oxide (ETO)	Penetrate packing material and device lumen	Toxic, Carcinogen and flammable
	Simple to operate and monitor	Lengthy cycle and aeration time
	Compatible with most medical devices	
ETO mixtures	Penetrates medical packing and many plastics	Toxic, Carcinogen and flammable
8.6% ETO/91.4% Hydro Chloro	Compatible with most medical devices	Lengthy cycle and aeration time
Fluoro Carbon (HCFC)	Cycle easy to control and monitor	
10% ETO/90% HCFC		
8.5% ETO/91.5% CO ₂		
Vaporized hydrogen peroxide	Safe for the environment and health care workers	Medical device restriction based on luminal size
	Non Toxic	Not used for liquid, linens, powders or any cellulose material
	Fast cycle time	Requires synthetic packing and special container Limited
	Used for heat and moisture sensitive items	clinical use
	Used for heat and moisture sensitive items	
Ozone	FDA cleared for metal and plastic instruments	Limited clinical use and limited microbial efficacy
	including some instruments with lumen	

OT Sterilization/ disinfection

Environment Protection Agency (EPA) approved disinfectants or chemical sterilants can be used for the regular cleaning of the OT table, floor and wall. (Rutala and Weber 2012) The following are available modes of OT sterilization/ disinfection.

a) Formaldehyde fumigation

Commonly used to sterilize the OT and other rooms. After sealing the windows, switch off fans and A.C. Formaldehyde gas is generated by adding 150g of KMnO₄ to 280mL of formalin for every 1000 cubic feet (28.3 cu.m³) of room volume. The reaction produces considerable heat, and so heat resistant vessels should be used. When formalin vapour is generated, doors should be sealed and left unopened for 48hours. Before entry into the OT the next day morning, 300mL of 10% ammonia solution is kept for 2-3 hours to neutralize formalin vapours.

Mode of Action

Formaldehyde inactivates microorganisms by alkylating the aminoacid and sulfhydryl groups of proteins and ring nitrogen atoms of purine bases.

Disadvantages

Occupational Safety and Health Administration (OSHA) has indicated that Formaldehyde should be handled in the workplace as potential carcinogen and has set an employee material compatibility, excellent cleaning properties and virtually no residues. It has the advantage of being a Formaldehyde-free disinfectant cleaner with low use concentration.

Active ingredients: Glutaral 100 mg/g, benzyl-C12-18alkyldimethylammonium chlorides 60 mg/ g, didecyldimethylammonium chloride 60 mg/g.

Advantages

- Provides complete asepsis within 30 to 60 minutes.
- Cleaning with detergent or carbolic acid not required.
- Formalin fumigation not required.
- Shutdown of O.T. for 24 hrs not required.⁷

c) Aldekol

A new method of fumigation has been evolved using 'Aldekol', a mixture containing 6% formaldehyde, 6% glutaraldehyde and 5% benzalkoniumchloride. (Sapna *et al.*, 2011)

d) Permanganatemethod

Five ounces of potassium permanganate for every 1000 cu.ft. of space are placed in a jar and on top of this 10-15 ounces of 40% formalin diluted with an equal amount of water is poured.

Evaluation method	Glucoprotamine	Formaldehyede + Glutaraldehyde	Hydrogen Peroxide + Silver Nitrate
Microbial Action	Broad Spectrum	Broad Spectrum	Broad Spectrum
Reaction Time	30 mins	1 hr	1 hr
Residual effect	Long	Moderate	Limited
Material Compatibility	Non-Corrosive	Non-Corrosive	Corrosive
Tolerance to Skin	Non-Irritant	Irritant to Skin and Eyes	Non-Irritant
	Non-Toxic		Non-Toxic
Carcinogenicity	Non Carcinogenic	Carcinogenic	Non Carcinogenic
Dilution Percentage	1%	2%	20%

Table 4. Comparison of various chemicals used for fogging

As soon as the reagents are mixed, a violet effervescence takes placeandformaldehydeissetfree. (Ananthanarayan *et al.*, 2013)

e) Paraformmethod

On heating formalin, the aldehyde changes into the solid polymeride - paraform. Gas is generated by heating paraform tablets. 25-30 tablets are required for every 1000cu.ft.ofspace. (Ananthanarayan *et al.*, 2013)

f) Virkon method

A Chemical compound - VIRKONis gaining importance as non-Aldehyde compound. Virkon is proved to be a safe virucidal, bactericidal, fungicidal, mycobactericidalis less effective against spores and fungi than some alternative disinfectants. It contains oxone (potassium peroxymonosulphate), sodium dodecylbenzenesulfonate, sulphamic acid; and inorganic buffers. It is typically used for cleaning up hazardous spills, disinfecting surfaces and soaking equipment. It is nontoxic. Several other compounds are emerging in the market for safer use, may need better resources for utility and implementation. (Gasparini et al., 1995)

g) Fogging method

Fogging involves nebulization of a disinfectant in a seated patient room until all surfaces were wet, followed by wiping off residual fluid from surfaces by masked and gowned personnel. Fogging as a method of OT disinfection involves initial investment in the form of fogging machines, but are reportedly more beneficial in the long term. (Rutala and Weber 2012; Shwetha *et al.*, 2012) The following table (Table – 4) enumeratesvarious chemicals used for fogging. (Shwetha *et al.*, 2012; StafinTuski *et al.*, 2009)

Conclusion

The OT forms a crucial area in a hospital, which also exposes the patients to grave infections in the absence of proper architectural design and infection control measures. The present article reviews the various disinfection techniques which are available to limit infections associated with OT. Various chemical sterilants are commercially available which are effective, minimal time consuming and pose negligible safety hazard for use. Fogging as a method of OT disinfection has gained widespread acceptance across the globe and is recommended especially in high turnover OTs, keeping in mind the effectiveness, ease of use, time required for OT disinfection and minimal health risk for hospital personnel. Microbiological sampling and surveillance of OT is also recommended to prevent HAIs.

REFERENCES

- Ananthanarayan R, Paniker CKJ. Sterilisation and Disinfection. In: ArtiKapileditor. Textbook of Microbiology. 9th Edition. Hyderabad: Universities Press, 2013. pp 334-35.
- Association for the advancement of Medical Instrumentation, American National Standards Institute. Comprenhensive Guide to Steam Sterilization, and Sterility Assurance in Health Care Facilites. Arlington, VA: Association for the Advancement of Medical Instrumentation:2010
- Blot S, M, Petrovic M, *et al.* Epidemiology and outcome of nosocomial blood-stream infection in elderly critically ill patients: a coparison between middle aged, old, and very old patients. *Crit Care Med*.2009;37:1634-1641.
- Bridgen RJ. Ch.1. The Operating department 2. Organisation and Management 3. Electricity &Electromedical Equipment 4.Static Electricity: Operating theatre technique, ^{5th} edition: Churchill Livingstone 1988; 09, 10, 13, 16-21, 27-31, 41, 43-45, 109
- Centers for Disease control and prevention. Health careassociated infections http://www.cdc.gov/ncidod/dhqp/ healthDis.html.
- Dorsch JA and Dorsch SE. Operating room design and equipment selection. Understanding Anaesthesia Equipment, 4th edition; Williams and Wilkins 1999 : 1015-16
- ESCRS Endophthalmitis Study Group: Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multi-centre study and identification of risk factors. J Cataract Refract Surg.33, 2007, 978 – 988
- Favero MS, Bond WW. Chemical disinfection of medical and surgical materials. In: Block SS, ed. Disinfection, sterilization, and preservation, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2001;881–917
- Fridkin SK, Kremer FB, Bland LA, Padhye A, McNeil MM, Jarvis WR. Acremoniumkilienseendophthalmitis that occurred after cataract extraction in an ambulatory surgical centre and was traced to an environmental reservoir. *Clin Infect Dis* 1996;22:222-27
- Gasparini, R., et al. "Evaluation of in vitro efficacy of the disinfectantVirkon. European Journal of Epidemiology, 1995; 11(2):193-197.
- Gupta M, Gupta AK. Modern ophthalmic operation theatre. In: Gupta AK editor. Current Topics in Ophthalmology-Ill. New Delhi: B.I. Churchill Livingstone Pvt Ltd,1995. pp 2-4.

- Harsoor SS, Bhaskar SB. Designing an ideal operating room complex. Indian J Anaesth 2007;51:193
- Miller CH, Riggen SD, Sheldrake MA, et al. Presence of microorganism in used ultrasonic cleaning solutions. Am J Dent, 1993;6:27-31
- Ransjo U, Engastrom L, Hakansson P, *et al.* A test for cleaning and disinfection processes in a washeer-disinfector. APMIS,2001;109:299-304
- Rutala W. A., D. J. Weber, and Healthcare Infection Control Practices Advisory Committee (HICPAC), "Guideline for disinfection and sterilization in healthcare facilities,"2008, http://www.cdc.gov/hicpac/Disinfection_Sterilization/toc.ht ml. Accessed June 21, 2012
- Rutala WA, Weber DJ. Health care Infection Control Practices Advisory Committee. Guideline for disinfection and sterilization in health care facilities.cdc.gov/ncidod/dhgp/ pdf/guidelines/Disinfection_Nov_2008.pdf.
- Sapna, Saptorshi Majumdar, Pradeep Venkatesh. The Operation Theatre: Basic Architecture. Delhi Journal of Ophthalmology 2011; 21(3):9-14.
- Sax H, Pittet D. Inter-hospital difference in nosocomial infection rates:importance of case-mix adjustment. Arch Intern Med.2002; 162:2437-2442
- Schulster L, Chinn Ry, CDC. Guidelines for environmental infection control in health care facilities. Recommendations of CDC and the Healthcare Infection Control Practices. Advisory committee (HIPAC). *MMWR*,2003; 52:RR-10): 1-42

Shwetha JV, Harsha TR, Sneha KC, Sathyanarayan MS, Nagarathnamma T. Operation theatre practices in Ophthalmology: An infection control perspective. Chakshu, 2012; 29(2): 51-58.

- Spaulding EH. Chemical disinfection and antisepsis in the hospital. J Hosp Res 1972;9:5–31. 11,chaksu) Favero MS, Bond WW. Chemical disinfection of medical and surgical materials. In: Block SS, ed. Disinfection, sterilization, and preservation, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2001;881–917
- Spaulding EH. Chemical disinfection of medical and surgical materials. Insterilizatio Lawrence C, Block SS, eds. Disinfection, Sterilization, and prevention. Philedelphia, PA:Lea and Febiger;1968:517-531
- Spaulding EH. Role of chemical disinfection in the prevention of nosocomial infections. In: Brachman PS, Eickhoff TC, eds. Proceedings of the International Conference on Nosocomial Infections, 1970. Chicago, IL: American Hospital Association, 1971;247–54
- Stafin Tuski, Wanda Grzybowska, Sabina Grzeszczuk, Ploter Leszczynski et al. Polish Journal of Microbiology, 2009; 58(4):347-353.
