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ARTICLE INFO                                       ABSTRACT 
 
 

We propose a solution to determine the optimal elastic matching of a deformable template to an 
image. The central idea is to cast the optimal matching of each template point to a corresponding 
image pixel as a problem of finding a minimum cost cyclic path in the three-dimensional product 
space as well as in four-dimensional product space spanned by the template and the input image.  
We introduce a  cost functional associated with each cycle, which consists of three terms: a data 
fidelity term favoring strong intensity gradients, a shape consistency term favoring similarity of 
tangent angles of corresponding points, and an elastic penalty for stretching or shrinking. The 
functional is normalized with respect to the total length to avoid a bias toward shorter curves. 
Optimization is performed by Lawler’s Minimum Ratio Cycle algorithm parallelized on state-of-
the-art graphics cards. The algorithm provides the optimal segmentation and point correspondence 
between template and segmented curve in computation times that are essentially linear in the 
number of pixels. A new approach to 4-D shape-based segmentation and tracking of multiple, 
deformable anatomical structures used in cardiac MR images can be implemented here. We 
propose to use an energy-minimizing geometrically deformable template (GDT) which can 
deform into similar shapes under the influence of image forces. The degree of deformation of the 
template from its equilibrium shape is measured by a penalty function associated with mapping 
between the two shapes. By minimizing this term along with the image energy terms of the classic 
deformable model, the deformable template is attracted towards objects in the image whose shape 
is similar to its equilibrium shape. This allows the simultaneous segmentation of multiple 
deformable objects using intra-as well as inter-shape information. Simulated Annealing (SA),a 
stochastic relaxation technique is used for segmentation while Iterated Conditional Modes 
(ICM),a deterministic relaxation technique is used for tracking. 
 
 
 
 

 
 
 

INTRODUCTION 
 

IMAGE segmentation and the tracking of objects are two of 
the most prominent topics in computer vision. Numerous 
authors have tried to solve these problems based on low level 
information such as edges or region statistics. However, their 
success has been limited: In real-world images, the low-level 
information are often corrupted, e.g., by changing lighting 
conditions and low contrast between object and background. 
As an example, consider Fig. 1, where a car is tracked in rainy  
weather. For pixel-accurate image segmentation, only 
resolutions can be handled. In this work, we present the first 
globally optimal shape based segmentation method able to 
yield pixel-accurate segmentations in effectively linear time.  
The segmentation problem in complex images cannot be 
addressed adequately without the anatomical a-priori 
knowledge which usually aids in making decisions about the 
image segmentation. In this case two major sources of a-priori 
knowledge can be identified:   A-priori information about the 
mean shape and the variability of anatomical objects. A-priori 
information about the mean location, orientation and size of 
the objects with respect to each other and their variability. 
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Here we address the segmentation and tracking problem in 
these images using Geometrically Deformable Templates 
(GDT).This novel approach differs in the following points 
from previously described models: Its deformation is 
controlled via a penalty function rather than via its 
parameterization .This penalty function is associated with a 
thin-plate spline (TPS) mapping function which maps the 
templates in its equilibrium configuration into a deformed 
configuration. Penalty function requires energy for any non-
affine deformation of the grid but does not penalize affine      
deformations. Moreover, the model can incorporate not only 
information about the mean location, orientation and size of 
the anatomical objects with respect to each other and their 
variability. Thus, the model can be used to segment multiple 
objects simultaneously. 
 
Related Work  
 

Image segmentation and tracking are closely related problems, 
yet each with its own history. We, therefore, review them 
separately. 
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Tracking Deformable Objects 
 
The tracking of objects has traditionally been based on feature 
points. More recently, methods have become popular that treat 
the object as an entity rather than an independent number of 
parts. Denzler and Niemann consider a set of patches that is 
linked by a ray model. While many of these methods are based 
on minimizing a suitable energy, none guarantees to find the 
global optimum. To determine global optima in the presence 
of significantly deforming curves has remained an open 
challenge. Furthermore, real-world applications typically 
require fast algorithms that can run in real time.  
 
Shape-Based Image Segmentation 
 
The task to partition an image into meaningful regions has 
received considerable attention in the past. When the limits of 
low-level methods became apparent, researchers endeavored 
to integrate prior knowledge into segmentation processes.  
 

 
 
Fig. 1. Tracking a car in bad weather: Despite bad visibility, reflections, 
and camera shake, the proposed method allows reliable tracking over a 

hundreds of frames. 

 
In addition, they are based on rather simple shape similarity 
measures, which do not attempt to establish correspondences 
of parts or points.   Discrete approaches do allow shape priors 
based on point correspondences while guaranteeing global 
optimality: are able to match open contours to images, taking 
into account an elastic shape similarity measure. Being based 
on dynamic programming, the method is, in principle, 
parallelizable. However, it is limited to open contours, and 
hence, does not provide segmentation. Although the method 
could be extended to closed contours by performing a 
complete search over the start point; in practice, this would be 
far too time-consuming. 
 
Contribution 
 
We present an effectively linear-time algorithm to match 
contours to images closed contours reduce the bias toward 
short curves by reverting to ratio functional and minimum 
ratio cycle computation. The proposed method supports 
different amounts of invariance’s, including translational and 
rotational ones. By exploiting its high parallelizability, real-
time tracking becomes feasible. 
 
Optimization of GDT’S 
 
Estimating the maximum a posteriori (MAP) solution directly 
is usually impossible due to the size of the configuration 
space, even for template models with very few vertices. 
Instead we have implemented two different optimization 
techniques for the segmentation and tracking process: 
Simulated Annealing (SA) minimization technique is used 

during the segmentation process and Iterated Conditional 
Modes (ICM) as an efficient local minimization technique is 
used during the tracking process. 
  
MATCHING AS CYCLES IN A PRODUCT SPACE 
 
The placed contour should be similar to the input contour and 
fulfill some data-driven criteria. In this work, we want it to be 
located at image edges. Fig. 2 gives an illustration of our 
approach: When a contour and an image are input, the 
algorithm locates a deformed version of the contour in the 
image and computes an alignment to the prior contour. 
 

 
Fig. 2. Starting from (a) a prior contour and (b) an input image, the 
proposed method simultaneously locates (c) the (possibly deformed) 
contour in the image and computes (d) a correspondence function 

between the two curves. 

 
 

 
 
Fig. 3. Cyclic paths in a 3D graph (no edges are shown): For any point on 

the prior contour, there are K copies of the image in the graph. Any 
assignment of pixels in the image to corresponding points on the template 

contour corresponds to a cyclic path in this graph. 

  
While this was known for open curves, the computationally 
much more challenging case of closed curves has so far not 
been solved. The product space arises by combining the 
functions into a single function which is called a cycle. The 
space in which these cycles live is visualized in Fig. 3.  
 
      It has the form of a torus and arises by placing a copy of 
the image for each point on the (one dimensional) prior 
contour. When splitting a closed contour at some point, it can 
be viewed as an open one. The space would then be a solid 
block. The curve C is obtained by projecting _ to the first two 
dimensions. The correspondences of the points on C can be 
read off in the third dimension. 
 
ASSIGNING A COST TO EACH CYCLE 
 
The presented method applies to a much larger class of 
functional. We used a more sophisticated data term based on 
patch comparison. Before we state the cost function, we 
briefly discuss how curves are represented. 
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Representing Curves 
 
Naturally, an optimization problem should not depend on the 
chosen parameterization. 
 

 
 

Fig. 4. The three ingredients of the proposed method: (a) An edge 
detector function assigning low values to high image gradients.(b) 

Computation of tangent angles of the contours C and S (shown for C,             
the tangent is drawn in black). (c) Computation of length distortion. 

 
   For most of this section, we will not assume any specific 
parameterization of the contour C to be optimized. Yet, in a 
few places, it will be convenient to have a uniform 
parameterization, i.e., with constant derivative everywhere. In 
the given setting, the correspondence function m is dependent 
on the contour C: m(s) will always denote the correspondence 
of the point C(s). Hence, if the parameterization of C is 
changed, the function m changes as well. In subsequent 
sections, we prefer the combined function. Since the objective 
function is not invariant against reparameterizations of Ґ (data 
term and shape measure are not coupled), we state it in terms 
of C and m. 
 
DISCRETIZING COST AND PRODUCT SPACE 
  
   To optimize over the cycles , , both the 
cost function and the product space are discretized. This 
section deals with the discretization, the optimization 
algorithm is detailed in the next one. The key idea is to 
represent C as a polygonal curve with (an a priori unknown 
number of) vertices on the pixel grid. In addition, the 
correspondence m is assumed to be linear along each 
polygonal line segment. It is therefore uniquely defined by 
assigning point correspondences to the two end points of such 
a segment. Specifically, we consider line segments connecting 
neighboring pixels on the pixel grid, where we choose an 8-
neighborhood. Discretizing Prior Contour and 
Correspondence, in addition to the cycle  , the prior contour 
S is also discretized. we represent it in the same form as the 
contour C, i.e., as an ordered set   of points on a 

suitable pixel grid, where—for ease of notation—  is 
represented twice. To get a dense representation of the 
contour, we require that si be among the eight closest 

neighbors of . The discrete correspondence function 

assigns each image pixel on C one of these   prior 
points. To ensure a monotone matching, we enforce that the 

start pixel of a segment  is assigned a shape point with 
index lower than or equal to that of the endpoint. Closure of 

the matching is obtained by the fact that .The length 
distortion penalizer gives two hard constraints, which limit the 
minimal and maximal distortion ratio. The upper limit 
corresponds to an index difference of at most K. Ensuring the 

lower limit is more intricate since here several line segments 

  may correspond to the same part   of S. We 
therefore allow the two indices to be equal.  However, for any 
shape point si, there may be at most K parts, where   both 

endpoints of  correspond to si. In practice, this is realized 
by modifying the correspondence function m: In the discrete 
setting, m maps to pairs (i,k) where i gives the shape point and 
k < K gives the number of image pixels already corresponding 
to si. If m maps to the same i at the beginning and end of the 
contour  segment, then the index k must be one higher for the 
end node. 
 

 
Fig. 5. Segmentation with a single template: Despite significant 

deformation, scale change, and translation, the initial template curve 
(red) is accurately matched to each template. 

 
SHAPE - BASED IMAGE SEGMENTATION 
 

We treat images with significant distortion. As a consequence, 
we allow K=5 image pixels to be matched to a single shape 
point and set a low length distortion weight with λ=0.1. The 
tangent angles are given more weight with ν=0.5—this term 
really drives the process.  
 

Translation-Invariant Matching 
 

In Fig. 5, the contour of a rabbit (viewed from the side) is 
matched to images from two different sequences. In the first 
sequence, the rabbit is shown from different viewpoints but at 
the same scale. Despite low contrast between object and 
background, the algorithm relocates the object reliably.  
 

On the Effect of Length Normalization 
 

We introduced the length normalization to reduce the bias 
toward shorter curves. This effect is demonstrated in Fig. 6: 
The figure shows the global optima for the ratio functional and 
for the numerator integral alone. The latter corresponds to the 
geodesic energy we proposed in [41]: 
 

 

 
Fig. 6. The length normalization removes the bias toward shorter curves. 
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and is minimized globally by a combination of branch and 
bound and the shortest path algorithms. Clearly, the ratio 
functional produces longer curves. We observe this whenever 
there is low contrast in some regions along the desired curve. 
 
Including Rotational Invariance 
 
Aside from translational invariance, sometimes one also wants 
rotational invariance. The proposed framework can be easily 
extended to include this: One simply samples the rotation 
angle in sufficiently dense intervals. The prior contour is 
rotated by the specified amount and the obtained contour is 
matched to the image.  
  
SHAPE-BASED TRACKING 
 
We present the problem of tracking deformable objects           
(or contours). In the first frame, the contour S is given. Then 
subsequently, we map the contour determined for the previous 
frame to the current frame. This performs better than keeping a 
fixed template since large-scale deformations are decomposed 
into a sequence of smaller ones. 
 
Conclusion 
 
We introduced a polynomial-time solution for matching a 
given contour to an image despite translation, rotation, scale 
change, and deformation. The central idea is to cast the 
assignment of an image pixel to each template point as a 
problem of finding optimal ratio cycles in a 3D graph that  
represents the product space of image and template. The 
energy that is optimized globally consists of an edge-based 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

data term and a shape similarity measure favoring similarity of 
local edge angles and minimal distortion (stretching/shrinking) 
of the template curve.  We propose to use an energy-
minimizing geometrically deformable template (GDT) which 
can deform into similar shapes under the influence of image 
forces. This allows the simultaneous segmentation of multiple 
deformable objects using intra-as well as inter-shape 
information, simulated annealing (SA). 
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