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INTRODUCTION 
 
Insulation failure within transformers is considered to be one of 
the most important causes of failure of power transformers. 
Impulse testing of transformers after assembly is an accepted 
procedure for the assessment of their winding insulation 
strength to surge over voltages. It is a routine test as explained 
standards such as IEC-60076, Part IV, 2002 
Manufacturing defects or inadequacy of insulation may lead to 
failure against impulse voltage stresses. Several techniques 
have been reported in the literature for detecting this fault.
survey of the faults in a transformer as presented in 
et al., 2010) shows that 19% of the total faults occur in the 
windings and this paper reviews the methods used in practice 
for detecting winding inter-turn fault. Different from the STFT, 
the wavelet transform can be used for multi-
signal through dilation and translation, so it can extract time
frequency features of a signal effectively 
2001). The wavelets have obtained great success in machine 
fault diagnostics for its many distinct advantages, not only for 
its ability in the analysis of non-stationary signals. A summary 
about the application of the wavelet in machine fault 
diagnostics, including the following main aspects: the time
frequency analysis of signals, the fault feature extraction, the
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ABSTRACT 

This paper proposes simple hardware architecture for realizing a Radial basis function (RBF) network 
for transformer impulse fault classification. Fault conditions are applied on the lumped parameter 
model derived for the DUT and the model is simulated using PSPICE o
currents thus computed are analyzed using db5 wavelet and the statistical features namely mean and 
Variance are extracted from the third level approximation. The RBF network has a number of 
advantages compared with other type of ANN including simpler network structure and faster learning 
speed. The key point of RBFNN is to decide a proper number of hidden nodes. Here the possibilistic 
FCM algorithm is used to cluster the derived statistical features into 21 different clusters repr
the defined fault types and the RBF network is constructed with 21 hidden nodes representing the 
clusters. The hardware implementation is carried out using Xilinx system generator for DSP on 
Spartan 6 FPGA. The overall classification accuracy of this scheme is 97%.
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Insulation failure within transformers is considered to be one of 
the most important causes of failure of power transformers. 
Impulse testing of transformers after assembly is an accepted 
procedure for the assessment of their winding insulation 

surge over voltages. It is a routine test as explained 
60076, Part IV, 2002 (IEC 60076 2002). 

Manufacturing defects or inadequacy of insulation may lead to 
Several techniques 

ed in the literature for detecting this fault. A 
survey of the faults in a transformer as presented in (Bhide               

shows that 19% of the total faults occur in the 
windings and this paper reviews the methods used in practice 

turn fault. Different from the STFT, 
-scale analysis of a 

lation and translation, so it can extract time–
frequency features of a signal effectively (Rao and Singh 
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about the application of the wavelet in machine fault 
diagnostics, including the following main aspects: the time–
frequency analysis of signals, the fault feature extraction, the 
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singularity detection for signals, the denoising and extraction 
of the weak signals, the compression of vibration signals and 
the system identification has been presented in 
2004). Studies on the location of power transformer faults 
during impulse test have been carried out extensively in 
(Purkait and Chakravorti 2000; 
 
Many fault diagnosis techniques based on fuzzy, neural 
networks and wavelet transforms have been proposed 
and Youssef  2004; Omar and 
Santhi  2013; Hung and Wang
Ngaopitakkul and Anantawat Kunakorn
et al., 2010; Vanamadevi et al.,
Vanamadevi et al., 2014). A method of impulse fault 
classification had been presented by the authors  in which the 
root mean square  value of the fifth level detail signal were 
extracted and considered for fault classification 
et al., 2008). Another method of impulse 
classify 7 different fault types in which the statistical features 
extracted from the third level approximation are considered for 
fault classification by the authors and the classification is 
achieved with a LVQ Network 
the work presented in (Vanamadevi 
propose a method for transformer impulse fault classification 
using RBF network with finer definition of fault types as 
compared to the work reported previously 
2014). A novel approach for self
had been proposed in (Ke Meng
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proposes simple hardware architecture for realizing a Radial basis function (RBF) network 
for transformer impulse fault classification. Fault conditions are applied on the lumped parameter 
model derived for the DUT and the model is simulated using PSPICE orcad software. The winding 
currents thus computed are analyzed using db5 wavelet and the statistical features namely mean and 
Variance are extracted from the third level approximation. The RBF network has a number of 

ANN including simpler network structure and faster learning 
speed. The key point of RBFNN is to decide a proper number of hidden nodes. Here the possibilistic 
FCM algorithm is used to cluster the derived statistical features into 21 different clusters representing 
the defined fault types and the RBF network is constructed with 21 hidden nodes representing the 
clusters. The hardware implementation is carried out using Xilinx system generator for DSP on 

his scheme is 97%. 

is an open access article distributed under the Creative Commons Attribution License, which permits 

 
 

singularity detection for signals, the denoising and extraction 
of the weak signals, the compression of vibration signals and 
the system identification has been presented in (Peng and Chu 

. Studies on the location of power transformer faults 
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et al., 2009). The work presented in (Tsung-Yig et al., 2009) 
has proposed the RBF neural network based DGA method for 
power transformer fault diagnosis. 
 
FPGAs with their concurrent processing capability are suitable 
for implementation of ANNs. An extensive review of the 
deployment of FPGA in industrial control systems is covered 
in (Eric Monmasson and Marcian N. Cirstea 2007). FPGA 
realization of a fast hardware efficient logic for fault detection 
and classification in transmission lines had been presented in 
(Simi P.Valsan and Shanthi Swarup 2009). FPGA based 
Induction motor failure monitoring embedded system is 
presented in (Rodriguez-Donate et al., 2009). An efficient 
impulse fault classification scheme consisting of parallel LVQ 
neural network for impulse fault classificationand DWT based 
feature extraction had been implemented on FPGA by the 
author in (Vanamadevi et al., 2014). The focus of this paper is 
to propose simple hardware architecture for realizing a trained 
Radial basis function (RBF) network on an FPGA. In this 
work, the authors propose a method for transformer impulse 
fault classification of 21 different fault types. To achieve good 
impulse fault classification the PFCM clustering algorithm 
(Neelam Kumari et al., 2012) is used in this scheme to group 
the statistical features extracted from the winding currents 
under 79 different fault conditions into 21 distinct clusters. The 
Radial basis function network is constructed with a hidden 
layer of 21 nodes whose Gaussian functions have their center 
parameters made equal to the cluster centers of these 21 
clusters and width parameter equal to 1. The FPGA realization 
of the proposed scheme is carried out in the MATLAB 
simulink environment with Xilinx system generator for DSP. 
The proposed scheme is able to classify the defined 
transformer impulse faults with 97% classification efficiency. 
 
Feature extraction for impulse fault classification 
 
A. Simulation of the Lumped Parameter model 
 
A specially designed 6.6kv voltage transformer winding is 
considered as the device under test (DUT). The simulation 
work is carried out with the ten section lumped parameter 
model derived for the DUT through measurement and 
calculation using formulae (Grover Fredrick 1946) based on 
the geometry of the winding. The lumped parameter model is 
excited with a signal defined similar to a standard lightning 
impulse (LI) of 1V amplitude, 1.2/50µs as front time and fall 
time respectively. The winding current through a current 
viewing resistor R as shown in Figure 1 is recorded under no 
fault and different simulated fault conditions. The ten sections 
of the lumped parameter model is divided into three regions 
namely line end (sections 1 up to 3), mid-winding (sections 4 
up to 7) and neutral end (sections 8 up to 10). The objective is 
to determine a detection and classification strategy by 
considering the presence of only series faults or only shunt 
faults in the three regions, or the simultaneous presence of 
shunt fault in sections of one region and series fault in any of 
the sections of the other two regions of the winding.  
 
The circuit simulation of the model is carried out to obtain 79 
winding current data set corresponding to the no fault and 
various simulated fault conditions (Vanamadevi et al., 2014). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1.   Lumped parameter model of the DUT 

 
The series faults are simulated by placing a short across a 
section and shunt faults are simulated by placing a short across 
a section end and ground. The winding currents are recorded at 
a sampling frequency of 10MHz. The record length of the 
winding current is 1mS, and the total number of data points is 
10028. A sample of winding currents recorded under 
simultaneous presence of shunt and series faults are shown in 
Fig. 2, Fig. 3 and Fig. 4. 

 

 
 
Fig.  2. Winding currents due to shunt fault in section 9 (neutral-

end) and series fault in the line end sections 

 
Extraction of statistical Discrimination features 
 
In this work third level approximation is analyzed to extract the 
features in view of the fact that this level frequency band 
includes the resonant peaks of the DUT. 
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Fig.  3. Winding currents due to shunt fault in section 1(line-end) 
and series fault in mid-winding/neutral-end sections 

        

 
 

Fig.  4. Winding currents due to shunt fault in section 4(mid-
winding) and series fault in neutral-end sections. 

 
An approximation contains the general trend of the original 
signal. The dB5 wavelet is chosen here as the mother wavelet 
as this wavelet is most widely used for fault detection 
applications. The statistical analysis of the third level 
approximation of the no fault winding current and winding 
currents recorded under series, shunt and simultaneous 
presence of series and shunt fault conditions are carried out     
using the designed DWT analysis filter bank followed by 
mean-variance computation block given in Fig.5 (Vanamadevi 
et al., 2014). The statistical features extracted are tabulated in 
Table 1 and Table 2. 

 

 
 

Fig. 5. Simulink model of DWT analysis filter bank and mean-
variance computation logic using Xilinx system generator for DSP 

Table 1. Statistical feature under presence of only series/ only 
shunt faults 

 
Fault type Mean Std.dev. 

nf 1.99E-05 3.57E-10 
sf1 1.90E-05 1.14E-09 
sf2 1.90E-05 1.21E-09 
sf3 1.90E-05 1.28E-09 
sf4 1.90E-05 1.33E-09 
sf5 1.90E-05 1.35E-09 
sf6 1.90E-05 1.35E-09 
sf7 1.90E-05 1.36E-09 
sf8 1.90E-05 1.32E-09 
sf9 1.90E-05 1.27E-09 
sf10 1.91E-05 1.22E-09 
shf1 2.09E-05 2.52E-09 
shf2 2.08E-05 2.46E-09 
shf3 2.07E-05 2.38E-09 
shf4 2.05E-05 2.28E-09 
shf5 2.03E-05 2.16E-09 
shf6 2.01E-05 2.01E-09 
shf7 1.98E-05 1.84E-09 
shf8 1.95E-05 1.61E-09 
shf9 1.91E-05 1.22E-09 

 
Table 2. Statistical features under simultaneous presence of series 

and shunt faults 
 

Fault type Mean Std.dev. 

shf1sf(4-10) 2.088E-05 2.523E-09 
shf2sf(4-10) 2.077E-05 2.463E-09 
shf3sf(4-10) 2.064E-05 2.375E-09 
shf4sf1 2.065E-05 2.417E-09 
shf4sf2 2.065E-05 2.414E-09 
shf4sf3 2.064E-05 2.397E-09 
shf5sf1 2.050E-05 2.272E-09 
shf5sf2 2.052E-05 2.271E-09 
shf5sf3 2.052E-05 2.277E-09 
shf6sf1 2.049E-05 2.338E-09 
shf6sf2 2.051E-05 2.342E-09 
shf6sf3 2.050E-05 2.324E-09 
shf7sf1 2.034E-05 2.154E-09 
shf7sf2 2.034E-05 2.142E-09 
shf7sf3 2.034E-05 2.150E-09 
shf4sf8 2.031E-05 2.248E-09 
shf4sf9 2.031E-05 2.253E-09 
shf4sf10 2.033E-05 2.245E-09 
shf5sf8 2.012E-05 2.009E-09 
shf5sf9 2.012E-05 2.003E-09 
shf5sf10 2.012E-05 2.000E-09 
shf6sf8 2.007E-05 2.144E-09 
shf6sf9 2.008E-05 2.152E-09 
shf6sf10 2.008E-05 2.144E-09 
shf7sf8 1.984E-05 1.825E-09 
shf7sf9 1.984E-05 1.836E-09 
shf7sf10 1.984E-05 1.828E-09 
shf8sf1 1.975E-05 2.001E-09 
shf8sf2 1.976E-05 2.026E-09 
shf8sf3 1.977E-05 2.019E-09 
shf9sf1 1.978E-05 2.012E-09 
shf9sf2 1.979E-05 1.988E-09 
shf9sf3 1.980E-05 1.936E-09 
shf8sf4 1.982E-05 1.872E-09 
shf8sf5 1.933E-05 1.773E-09 
shf8sf6 1.934E-05 1.816E-09 
shf8sf7 1.934E-05 1.827E-09 
shf9sf4 1.935E-05 1.835E-09 
shf9sf5 1.937E-05 1.820E-09 
shf9sf6 1.938E-05 1.787E-09 
shf9sf7 1.941E-05 1.720E-09 

 
These features have promising level of discrimination among 
the 21 different fault types and is obvious from Fig.6 which 
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show that the features belonging to different fault types almost 
fall in separate clusters.  
 

 
Fig.6. Statistical features extracted from the winding currents due 

to no fault and different fault conditions
 

Design of Radial Basis Function Neural
Impulse fault Classification 
 
A Radial basis function network is a pattern classifier net 
having a feed forward network. Classification task is 
performed by transforming the pattern into a high dimensional 
space in a non-linear manner.  It requires less training time than 
the other multilayer neural network to achieve the same 
performance.  The construction of a Radial Basis Function 
neural Network, in its most basic form given in Fig.7 involves 
three layers with entirely different roles. The input layer is 
made up of source nodes (sensory units) that connect the 
network to its environment. The second layer, the only hidden 
layer in this network, applies a non linear transformation from 
the input space to the hidden space. In most applications the 
hidden space is of high dimensionality. Each node in the 
hidden layer finds out the radial distance from center to each 
point on the associated radial basis function. The output layer 
is linear and provides the response of the network to the 
activation pattern applied to the input layer.  
 

 
Fig. 7.  Radial basis function network designed for impulse fault 

classification 
 
The statistical features extracted are grouped into 21 distinct 
clusters using PFCM algorithm (Neelam Kumari 
These are the possible distinct clusters that coul
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Statistical features extracted from the winding currents due 
to no fault and different fault conditions 

Design of Radial Basis Function Neural Network for  

A Radial basis function network is a pattern classifier net 
having a feed forward network. Classification task is 
performed by transforming the pattern into a high dimensional 

linear manner.  It requires less training time than 
tilayer neural network to achieve the same 

The construction of a Radial Basis Function 
neural Network, in its most basic form given in Fig.7 involves 
three layers with entirely different roles. The input layer is 

sory units) that connect the 
network to its environment. The second layer, the only hidden 
layer in this network, applies a non linear transformation from 
the input space to the hidden space. In most applications the 

Each node in the 
hidden layer finds out the radial distance from center to each 
point on the associated radial basis function. The output layer 
is linear and provides the response of the network to the 

 

 

ig. 7.  Radial basis function network designed for impulse fault 

The statistical features extracted are grouped into 21 distinct 
Neelam Kumari et al., 2012). 

These are the possible distinct clusters that could be obtained 

with 79 dataset representing various fault conditions.  Hence 
Radial basis function neural network is constructed with 21 
hidden nodes. The Gaussian function’s center parameters of the 
hidden layer nodes are assigned with the determined clust
center values and the width parameter values are assigned 
unity. Out of the 79 dataset, the RBF network is trained with 43 
dataset falling under 21 defined fault types and tested with 
remaining data. Table 3 lists the defined fault types and their 
respective fault number which are considered as the target 
while training the network. The RBF network was designed 
trained and tested using MATLAB. Impulse fault classification 
obtained with the RBF network for the test data and the 
complete dataset are shown in Fig.8 and Fig.9 respectively.

 
Fig.8. Impulse fault classification obtained with the RBF network 

for the test data
 

 
Fig.9. Impulse fault classification obtained with the RBF 

with the entire dataset
 

Table 3. Defined fault types and assigned

Fault types 

NF 
SF1/SF2/SF10/SHF9 
SF3/SF9 
SF4/SF5/SF6/SF7/SF8 
SHF9SF7,SHF8 
SHF9SF1&SHF9SF6 
SHF9SF2-5 
SHF7,SHF7SF8-10 
SHF8SF6-7 
SHF8SF1,SHF8SF5 
SHF8SF2-4 
SHF6,SHF6SF8-10 
SHF7SF1-3 
SHF5,SHF5SF8-10 
SHF6SF1-3 
SHF4SF8-10 
SHF5SF1-3 
SHF3,SHF3SF4-10 
SHF4SF1-3 
SHF2,SHF2SF4-10 
SHF1,SHF1SF4-10 
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-5
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with 79 dataset representing various fault conditions.  Hence 
Radial basis function neural network is constructed with 21 
hidden nodes. The Gaussian function’s center parameters of the 
hidden layer nodes are assigned with the determined cluster 
center values and the width parameter values are assigned 
unity. Out of the 79 dataset, the RBF network is trained with 43 
dataset falling under 21 defined fault types and tested with 
remaining data. Table 3 lists the defined fault types and their 

ctive fault number which are considered as the target 
while training the network. The RBF network was designed 
trained and tested using MATLAB. Impulse fault classification 
obtained with the RBF network for the test data and the 

in Fig.8 and Fig.9 respectively. 
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Hardware realization of Radial Basis Function Neural 
Network on spartan 6 fpga using xilinx system generator  
for  dsp 
 
The SIMULINK model for implementing the trained RBF 
neural network is developed using XILINX system generator 
blocks as given in Fig.10. The input data to the RBF network is 
fed from the ROMs storing the extracted Features. The 
subsystem representing the hidden RBF layer is implemented 
with adder and multiplier blocks to compute the Euclidean 
distance followed by an Mcode block to implement the radial 
basis function. Fig.11 shows the simulink model developed for 
the hidden RBF layer subsystem. The Output layer of the RBF 
Network is a linear layer whose weights are stored in a ROM 
and the bias for this layer is stored as a constant. Simulink 
model developed for implemtation of this layer is given in 
Fig.12. The response of the SIMULINK model of RBF 
network obtained in the connected scopes during simulation is 
given in Fig.13.   
 

 
 

Fig.10. Simulink model of the RBF network constructed using 
Xilinx System generator toolbox 

 

 
 

Fig.11. Simulink model for hidden RBF layer computation 
subsystem 

 

 
 

Fig.12. Simulink model for Output linear layer computation 
subsystem 

 
 

Fig.13. Scope waveforms of Mean, Variance and Fault Class 
obtained   during simulation 

 
The DWT Based feature extraction scheme designed and 
implemented by the author (Vanamadevi et al., 2014) is 
combined with RBF NN  to achieve the transformer Impulse 
fault classification scheme. The recorded winding current 
samples are stored in a ROM and is passed through DWT 
feature extraction scheme whose outputs namely mean and 
variance are fed as inputs to RBF network which finally detects 
the presence of fault and identifies the fault class.  

  

 
 
Fig.14. Simulink model of the RBF NN based Impulse fault 

classification scheme constructed using Xilinx System generator 
toolbox 

 
The general purpose SPARTAN6 FPGA kit, which has 
XC6SLX25-3FTG256 IC developed by Xilinx Inc., is  used for 
implementation as shown in Fig.15. Firstly the hardware 
realization of RBF network is carried out whose response 
recorded using DSO is given in Fig.16 and the device 
utilization summary is given in Table 4. The response of 
Impulse fault classification scheme comprising of DWT feature 
extraction scheme and RBF network for no fault winding 
current data is shown in the Fig.17. The response for 
simultaneous presence of series fault at section 10 and shunt 
fault at section 2 is given in Fig.18. 
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Fig.15. Experimental setup for downloading the design in 
SPARTAN6 FPGA 

 

 
 

Fig.16. The response of the trained RBF network realized in 
SPARTAN6 FPGA recorded using DSO for the entire dataset 

 
Table 4. Device utilization summary 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.17. Scope waveforms of Mean, Variance and Fault Class 
obtained   during simulation with no-fault current samples loaded 

in ROM 

 
 

Fig.18. Scope waveforms of Mean, Variance and Fault Class 
obtained   during simulation with simultaneous presence of series 

fault at section 10 and shunt fault at section 2 current samples 
loaded in ROM 

 
Thus the RBF network is constructed with 21 hidden nodes 
whose radial basis functions having centers as the cluster 
centers of the 21 clusters and width parameter made equal to 1. 
The RBF network which is implemented using MATLAB 
coding had the classification accuracy of 97%. The 
classification accuracy has got reduced in the hardware realized 
RBF network as we reduced the word length of signals at 
various blocks since the scheme exceeded the capacity of 
SPARTAN6 FPGA and hence we are carrying out trials with 
modification in xilinx blocks usage.  

 
Conclusion 
 
FPGA components available today have usable sizes at an 
acceptable price. This makes them effective factors for cost 
savings and time-to-market when making individual 
configurations of standard products. A time consuming and 
expensive redesign of a board can often be avoided through 
application-specific integration of IP cores in the FPGA - an 
alternative for the future, especially for very specialized 
applications with only small or medium volumes. The 
proposed scheme with the DWT based feature extraction and 
the RBF network based impulse fault classification classified 
efficiently the finely defined fault types. This scheme has been 
found to classify successfully the simultaneous presence of 
multiple minor faults treated in this work.  
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