

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 3, Issue, 4, pp.263-266, April, 2011

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

COMPACT ORIENTED ANTI-INVARIANT SUBMANIFOLDS OF KAEHLERIAN MANIFOLD

* Petwal, K. C. and Jagdish Rawat

Department of Mathematics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal-249199

ARTICLE INFO	ABSTRACT
<i>Article History:</i> Received 5 th January, 2011 Received in revised form 27 th February, 2011 Accepted 13 th March, 2011 Published online 27 th April 2011	Anti-invariant (or totally real) submanifolds of Kaehlerian manifold have been studied by Blaer, Chen, Houh, Kon, Ludden Ogiue, Okumura, Yano and others. The purpose of this paper is to study a compact n-dimensional anti-invariant submanifold M immersed in n-dimensional complex projective space ($\mathbb{CP}^n, n > 1$). First section contains some preliminaries and in section two we have pursued Kaehlerian manifold of dimension 2n and constant Holomorphic sectional curvature ($M^{2n}(\mathbb{CP}^n, n > 1)$). Also some important theorems have been investigated. In third section we have
Key Words: Trace of Matrix, Anti-invariant, Oriented, Submanifold, Kaehlerian.	discussed the compact oriented anti-invariant submanifold and its geodesic properties and obtained some results
	Mathematics Subject Classification (2010): 53B35; 53B20; 53B25 © Copy Right, IJCR, 2011 Academic Journals. All rights reserved.

INTRODUCTION

Let M^{2n} be a Kaehlerian manifold of dimension greater than 2n, where n is even and M an n-dimensional Riemannian manifold. Let J be the complex structure of M^{2n} . We define M a totally real submanifold of M^{2n} if M admits an isometric immersion into M^{2n} such that $J(T_x(M)) \subset T_x(M)^{\perp}$, where $T_x(M)$ and $T_x(M)^{\perp}$ denote the tangent space and the normal space of M at x respectively. Let h be the second fundamental form of M in M^{2n} and denote by S the square of length of the second fundamental form h. Now, Chen-Ogiue [9] have define and prove the following:

Definition 1: Let M be an n-dimensional compact antiinvariant minimal submanifold immersed in $M^{2n}(c)$, if $S < \frac{n(n+1)}{4(2n-1)}$ then M is totally geodesic.

Definition 2: Let M be an n-dimensional anti-invariant minimal submanifold immersed in $M^{2n}(c)$. If the sectional curvature of M is constant, then M is differ totally geodesic or has nonpositive sectional curvature. Moreover, if the second fundamental form of the immersion is parallel then M is totally geodesic or flat. Moreover, Ludden-Okumura-Yano [11] studied an n-dimensional anti-invariant minimal submanifold M of CP^n satisfying $S = \frac{n(n+1)}{2n-1}$, where CP^n denotes an n-dimensional complex projective space of constant holomorphic sectional curvature. Let a local field of orthogonal frames l_1, \ldots, l_{2n} in M^{2n} which are tangent to M. Denote $[l_i$ by l_i and let A^1, \ldots, A^{2n} be the field of dual frames with respect to the frame field of M^{2n} , then the structure equations of M^{2n} are given by

$$(1.1) dA^p = -A^p_g \wedge A^q,$$

 $A_{g}^{p} + A_{p}^{q} = 0, \ A_{v}^{u} = A_{v}^{u'} A_{v}^{u'} = A_{u}^{v'},$ (1.2)

(1.3)
$$dA_q^p = -A_r^p \wedge A_q^r + f_q^p, f_q^p = \frac{1}{2} K_{qrs}^p A^r \wedge A^s$$
$$K_{qrs}^p + K_{qsr}^p = 0$$

When we restrict these forms to M, we have

(1.4)
$$A^{i} = 0$$
.
Since $dA^{i} = -A^{i}_{ii} \wedge A^{ii} = 0$, by Cartan's lemma we can write

(1.5)
$$A_{u}^{i} = h_{uv}^{i} A^{u}, \ h_{uv}^{i} = h_{vu}^{i}$$

and from (1.2) it follows that

 $(1.6) \qquad h_{W}^{U} = h_{W}^{V}$

From these formulas we obtain the following structure equations of M:

(1.7)
$$dA^{u} = -A^{u}_{v} \wedge A^{v}_{,,} A^{u}_{v} + A^{v}_{u} = 0$$
(1.8)

$$dA_{v}^{u} = -A_{w}^{u} \wedge A_{v}^{w} + \Omega_{v}^{u}, \Omega_{v}^{u} = \frac{1}{2} R_{vwx}^{u} A^{w} \wedge A^{x},$$

9)
$$R_{vwx}^{u} = K_{vwx}^{u} + \sum_{i} (h_{v}^{i} - h_{v}^{i} - h_{v}^{i} - h_{v}^{i})$$

(1.9)
$$R_{VWX}^{U} = K_{VWX}^{U} + \sum_{i} (h_{uW}^{i} h_{VX}^{i} - h_{uX}^{i} h_{VW}^{i}).$$

$$(1.10) aA_j^* = -A_k^* \wedge A_j^* + \Omega_j, \Omega_j^* = \frac{-R_{jww}^*}{2} A^* \wedge A^*,$$

(1.11)
$$R_{jws}^{i} = K_{jws}^{i} + \sum_{i} (h_{uw}^{i} h_{us}^{j} - h_{us}^{i} h_{uw}^{j}).$$

The forms $[u_{k}^{\nu}]$ define the Riemannian connection of M, and the form $[u_{k}^{\nu}]$ the connection induced in the normal bundle of M. From (1.2) and (1.5) it follows that

$$(1.12) h_{vw}^{u} = h_{uv}^{v} = h_{uv}^{w}$$

^{*}Corresponding author: kcpetwal@gmail.com

where we have written h_{TW}^{u} in place of h_{UW}^{u} to simplify the notation. The second fundamental form of M is represented by $h_{UV}^{i}A^{u}A^{v}e_{i}$, and is sometimes denoted by its components h_{UV}^{i} . If the second fundamental form is of the form $\frac{e_{uv}(\Sigma_{W}h_{WW}^{i}e_{i})}{n}$, then M is said to be totally umbilical. If h_{uv}^{i} is of the form $h_{UV}^{i} = \frac{(\Sigma_{W}h_{WW}^{i}e_{i})}{n}$, then M is said to be umbilical with respect to e_{i} . We call $\frac{(\Sigma_{W}h_{WW}^{i}e_{i})}{n}$ the mean curvature vector of M, and M is said to be minimal if its mean curvature vector vanishes identically, i.e., $\Sigma_{W}h_{WW}^{i} = 0$ for all i. We define the covariant derivative h_{UW}^{i} by

(1.13)
$$h_{uvw}^{i}A^{w} = dh_{uv}^{i} - h_{ux}^{i}A_{v}^{x} - h_{xv}^{i}A_{u}^{x} + h_{uv}^{j}A_{j}^{i}$$

The Laplacian Δh_{uv}^i of h_{uv}^i is defined to be

(1.14)
$$\Delta h_{uv}^i = \sum_w h_{uww}^i,$$

where we have defined h_{uvwe}^i by

$$(1.15) \quad h_{uvwx}^{i} A^{x} = dh_{uvw}^{i} - h_{xvw}^{i} A^{x}_{u} - h_{uxw}^{i} A^{x}_{v} - h_{uvx}^{i} A^{x}_{w} + h_{uvw}^{j} A^{i}_{j}.$$

In the sequel we assume that the second fundamental form of M satisfies equations of Codazzi:

$$(1.16) \quad h_{uvw}^i - h_{uwv}^i = 0.$$

Then, from (1.15), we have

(1.17)
$$h_{uvwx}^{i} - h_{uvxw}^{i} = h_{ux}^{i} R_{vwx}^{x} + h_{yv}^{i} R_{uwx}^{y} - h_{uv}^{i} R_{jwx}^{f}.$$

On the other hand, (1.14) and (1.15) imply that

(1.18)
$$\Delta h_{uv}^i = \sum_w h_{uvww}^i = \sum_w h_{wuvw}^i$$

If M^{2n} is locally symmetric, then we have the following equation (Braidi-Hsiung)

$$(1.19) \qquad \sum_{i,u,v} h_{uv}^{i} = \sum_{i,u,v,w} (h_{uv}^{i} h_{wwuv}^{i} - K_{uvj}^{i} h_{uv}^{i} h_{ww}^{j} + 4K_{jwu}^{i} h_{vw}^{j} h_{uv}^{i} - K_{wjw}^{i} h_{uv}^{i} h_{uv}^{j} + \\ + 2K_{wuw}^{y} h_{vv}^{i} h_{uv}^{i} + 2K_{uvw}^{y} h_{yv}^{i} h_{uv}^{i}) - \sum_{i,j,u,v,w,x} [(h_{uw}^{i} h_{vw}^{j} - \\ -h_{vw}^{i} h_{uw}^{j}) (h_{ux}^{i} h_{vx}^{j} - h_{vx}^{i} h_{ux}^{j}) + h_{uv}^{i} h_{wx}^{i} h_{uv}^{j} h_{wu}^{j} - \\ h_{vw}^{i} h_{uw}^{j} h_{uw}^{j} h_{ux}^{j} + h_{uv}^{i} h_{ux}^{j} h_{ux}^{j} + h_{uv}^{i} h_{wx}^{j} h_{uv}^{j} - \\ h_{uv}^{i} h_{uw}^{j} h_{uv}^{j} h_{ux}^{j} + h_{uv}^{i} h_{ux}^{j} h_{ux}^{j} h_{uv}^{j} h_{ux}^{j} + h_{uv}^{i} h_{ux}^{j} h_{uv}^{j} h$$

Compact Oriented Anti-invariant Submanifolds

Let us suppose $M^{2n}(c)$ is a Kaehlerian manifold of dimension 2n of constant holomorphic sectional curvature 'c'. Then the curvature tensor of M^{2n} is given by

(2.1)

$$K_{qrs}^{p} = \frac{1}{4}c(\delta_{pr}\delta_{cs} - \delta_{ps}\delta_{qr} + J_{pr}J_{qs} - J_{ps}J_{qr} + 2J_{pq}J_{rs}),$$

where δ_{pr} denote the Kronecker deltas. Let M be an ndimensional anti-invariant submanifold immersed $\ln[M^{2n}(c)]^n$. From the condition on the dimension of M and M^{2n} it follows that l_1, \ldots, l_n is a frame for $T_x(M)^{\perp}$. In view of this and using (1.2), (1.5) and (2.1) we reduce (1.18) to

$$(2.2) \quad \sum_{i,u,v} h_{uv}^{i} \Delta h_{uv}^{i} = \sum_{i,u,v,w} h_{uv}^{i} h_{wwuv}^{i} + \frac{1}{4} (n+1) c \sum_{i,u,v} h_{uv}^{i} h_{uv}^{i} - \frac{1}{2} c \sum_{i} (\sum_{i} h_{uu}^{i})^{2} + \\ + \sum_{i,j,u,v,w,x} (h_{uv}^{i} h_{yv}^{j} h_{wu}^{i} h_{xx}^{j} - h_{uv}^{i} h_{uv}^{j} h_{wx}^{i} h_{wx}^{j}) - \\ \sum_{i,j,u,v,w,x} (h_{uw}^{i} h_{wv}^{j} - h_{uw}^{i} h_{wv}^{i}) (h_{ux}^{i} h_{xv} - h_{ux}^{i} h_{xv}^{i}).$$

For each a, let H_a denote the symmetric matrix (h_{uv}^i) then (2.2) can be written as

(2.3)

$$\sum_{i,u,v,h} b_{uv}^{i} \Delta h_{uv}^{i} = \sum_{i,u,v,h} b_{uv}^{i} b_{uv}^{i} h_{uv}^{i} + \sum_{i} \left[\frac{1}{4} (u+1)c \ tr H_{i}^{2} - \frac{1}{2} c(tr H_{i})^{2} \right] + \sum_{i,j} \left[tr (H_{i}H_{j} - H_{j}H_{i})^{2} - \left[tr (H_{i}H_{j}) \right]^{2} + tr H_{i} tr (H_{i}H_{i}) \right]$$

where $t_r H_i^2$ denote the trace of the square matrix H_i^2 i.e. sum of the element of main diagonal of a square matrix. Equation (2.3) was obtained by Chen-Ogiue [9] for an anti-invariant minimal submanifold M^n immersed in $[M^{2n}(G)]^n$. Now set

$$S_{ij} = \sum_{uv} h_{uv}^i h_{uv}^j, S_i = S_{ii}, S = \sum_i S_i$$

so that S_{ij} is symmetric $(n \times n)$ -matrix and can be assumed to be diagonal for a suitable choice of l_{n+1}, \dots, l_{2n} , and S is the square of the length of the second fundamental form h_{uv}^{l} of M. Since $trD^{2} = \sum_{u,v} (a_{uv})^{2}$ is independent of the choice of a frame, for any symmetric $D = (a_{uv})$ we can rewrite (2.3) as

$$\begin{aligned} & (2.4) \\ \Sigma_{i,u,v} h^{i}_{uv} \Delta h^{i}_{uv} &= \\ \Sigma_{i,u,v,w} h^{i}_{uv} h^{i}_{wvruv} + \frac{1}{4} (n+1)cS - \sum_{i} S^{2}_{i} + \sum_{i,j} tr \left(H_{i}H_{j} - H_{j}H_{i} \right)^{2} - \\ & - \frac{1}{2} c \sum_{i} (trH_{i})^{2} + \sum_{i,j} trH_{j} tr(H_{i}H_{j}H_{i}). \end{aligned}$$

Now we have the following lemma

Lemma (I): Let D and E be symmetric $(n \times n)$ -metrics. Then

$$-tr(DE - ED)^2 \le 2trD^2trE^2$$

and the equality holds for non-zero matrices D and E if and only if D and E can be transformed simultaneously by an orthogonal matrix simultaneously into scalar multiples of \overline{D} and \overline{E} respectively, where

$$\overline{D} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \overline{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Moreover, if D_1, D_2, D_3 are symmetric (n, n) -matrices such that

$$-tr(D_i D_j - D_j D_i)^2 = 2tr D_i^2 tr D_j^2, \ 1 \le i, j \le 3, \ i \ne j,$$

then at least one of the matrices D_i must be zero. by using Lemma 1, we have the following inequality which plays an important role in the sequel.

$$(2.5) \qquad -\sum_{i,j} tr(H_i H_j - H_j H_i)^2 + \sum_i S_i^2 - \frac{1}{4} (n+1)cS \le 2\sum_{i\neq j} S_i S_j + \sum_i S_i^2 - \frac{1}{4} (n+1)cS \le 2\sum_{i\neq j} S_i S_j + \sum_i S_i^2 - \frac{1}{4} (n+1)cS = \left[\left(2 - \frac{1}{n}\right)S - \frac{1}{4} (n+1)c \right] S - \frac{1}{n} \sum_{i\neq j} (S_i - S_j)^2 A_i$$

Then (2.4) and (2.5) imply that

$$(2.6) \qquad -\sum_{i,u,v} h^i_{uv} \Delta h^i_{uv} \leq B - \sum_{i,u,v,w} h^i_{uv} h^i_{wwav} ,$$

where

(2.7) $B = \left[\left(2 - \frac{1}{n}\right) S - \frac{1}{4} (m + 1)c \right] S + \frac{1}{2} c \sum_{l} (trH_l)^2 - \sum_{l,j} trH_j tr(H_lH_jH_l).$ **Theorem (2.1):** Let *M* be an n-dimensional compact oriented anti-invariant submanifold immersed in Kaehlerian manifold of dimension 2n and constant Holomorphic sectional curvature $[M^{2n}(c)]^n$. Then

(2.8)
$$\int_{M} [B - \sum_{i} (trH_{i}) \Delta(trH_{i})] dV \ge 0,$$

where dV denotes the volume element of M.

Proof: First we obtain

$$\int_M \sum_{i,u,v,w} (h^i_{uvw})^2 \, dV = -\int_M \sum_{i,u,v} h^i_{uv} \Delta h^i_{uv} \, dV \ge 0.$$

On the other hand, we have [8]

$$\int_{M} \sum_{i,u,v,w} h_{uv}^{i} h_{www}^{i} dV = \int_{M} \sum_{i} (trH_{i}) \Delta (trH_{i}) dV.$$

From these equations and (2.6) follows the inequality

$$(2.9) \int_{M} \left[B - \sum_{i} (trH_{i}) \Delta(trH_{i}) \right] dV \ge \int_{M} \sum_{i,u,v,w} (h_{uvw}^{i})^{2} dV \ge 0,$$

which is same as equation (2.8).

Theorem (2.2): Let M be an n-dimensional compact oriented anti-invariant minimal submanifold immersed in Kaehlerian manifold of dimension 2n and constant Holomorphic sectional curvature i.e. $M^{2n}(c)$. Then

(2.10)
$$\int_{M} \left[\left(2 - \frac{4}{n} \right) S - \frac{4}{4} (n+1) c \right] S dV \ge 0.$$

This is the special case of theorem (2.1) which was proved essentially by Chen-Ogiue [9].

2. Compact oriented anti-invariant submanifold in a totally geodesic

Now we assume that M is an n-dimensional compact oriented totally real submanifold immersed in $[M^{\mathbb{Z}n}(c)]^n, n > 1$ and that M is not totally geodesic in $M^{\mathbb{Z}n}$ but satisfies

(3.1)
$$\int_{M} \left[B - \sum_{i} (trH_{i}) \Delta(trH_{i}) \right] dV = 0.$$

Then (2.9) implies that $\hbar_{\text{MFW}}^i = \mathbf{0}$, i.e., the second fundamental form of M is covariant constant, so that $\Delta h_{\text{MFW}}^i = \mathbf{0}$, and all terms on both sides of (2.6) vanish. It follows that inequalities (2.4) and (2.5) imply

(3.2)
$$\frac{1}{n}\sum_{i>j}(S_i - S_j)^2 = 0,$$

(3.3)
$$-tr(H_iH_j - H_jH_i)^2 = 2trH_i^2trH_j^2$$

For any $i \neq j$. Then by Lemma 1 we may assume that $H_i = 0$ for i = n + 3, ..., 2n, which shows that $S_i = 0$. But by (3.2) we case that $S_i = S_j$ for any *i*, *j*. Since *M* is not totally geodesic, n = 2 and therefore by using Lemma 1 we can assume that

(3.4)
$$H_{n+1} = \lambda \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, H_{n+2} = \mu \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

From this it follows that M is a minimal surface immersed in $[M^{2n}(c)]^n$. Since the second fundamental form h of M^2 is covariant constant, the sectional curvature of M^2 is constant and hence M^2 is flat by definition 2. On the other hand, by using (1.13) we obtain

(3.5)
$$dh_{uv}^{i} = h_{ux}^{i} A_{v}^{x} + h_{xv}^{i} A_{u}^{x} - h_{uv}^{j} A_{j}^{i}$$

Setting i = 3, u = 1, v = 2, we see that $d\lambda = dh_{12}^{2} = 0$, which means that λ is constant. Similarly setting i = 4 and u = v = 1, we see that μ is constant. By (3.2) we get $\lambda^{2} = \mu^{2}$, and since $5 = \frac{1}{2}c$ we have $\lambda^{2} + \mu^{2} = \frac{1}{4}c$ so that $\lambda^{2} = \frac{1}{2}c$. Since M is not totally geodesic, we may assume that c > 0 and $-\lambda = \mu = \frac{1}{2}\sqrt{\frac{c}{2}}$. Then (1.5) and (3.4) imply

$$A_1^3 = \lambda A^2, A_2^3 = \lambda A^1, A_1^4 = \mu A^1, A_2^4 = -\mu A^2$$

On the other hand, setting i = 3, u = v = 1 in (3.5), we have $A_4^3 = \frac{tA}{v}A_1^2 = 2A_2^4$. Hence we obtain the following

Theorem (3.1): Let M be an n-dimensional compact oriented anti-invariant submanifold immersed in $[M^{2n}(c)]^n$, n > 1 s.t. M is not totally geodesic but condition (3.1) exist. Then M is a flat surface minimally immersed in $[M^{2n}(c)]^2$, and w. r. t. an adapted dual orthonormal frame field A^1, A^2, A^3, A^4 , the connection form (A_q^p) of $[M^{2n}(c)]^2$, restricted to M, is given by

$$\begin{bmatrix} 0 & A_2^1 & -\lambda A^2 & -\mu A^1 \\ -A_2^1 & 0 & -\lambda A^1 & \mu A^2 \\ \lambda A^2 & \lambda A^1 & 0 & 2A_2^1 \\ \mu A^1 & -\mu A^2 & -2A_2^1 & 0 \end{bmatrix}, \quad -\lambda = \mu = \frac{1}{2} \sqrt{\frac{2}{2}}$$

Here, we take an n-dimensional complex projective space CP^{*} of constant holomorphic sectional curvature 4 as an ambient space. Then the above theorem implies.

Theorem (3.2): Let M be an n-dimensional compact oriented totally real submanifold immersed in \mathbb{CP}^n , n > 1, such that M is not totally geodesic but satisfies (3.1). Then n = 2 and $M = S^1 \times S^1$.

REFERENCES

- Alfonso Carriazo, Young Ho Kim¤ and Dae Won Yoon: Some Inequalities on Totally real Submanifolds in locally Conformal Kaehler space, J. Korean Math. Soc. 41 (2004), No. 5, 795-808.
- K. Matsumoto, I. Mihai & A. Oiaga, Shape operator AH for slant submanifolds in complex space forms, Bull. Yamagata Univ. Natur. Sci. 14 (2000), No. 4, 169-177.
- Y. B. Shen, Scalar curvature for totally real minimal submanifolds, Chinese Ann. Math. Ser. A 12 (1991), No. 5, 573–577.

- Liu Ximin: Totally real submanifolds in a complex projective space, Internat. J. Math. & Math. Sci. Vol. 22, (1999), No.1, 205–208.
- K. C. Petwal, Shikha Uniyal & Jadish Rawat: Complete Kaehler Manifolds with Totally real bisectional curvature tensor, J. Cal. Math. Soc., Vol. 6, (2010) No.1, 1-8.
- K. C. Petwal, Jadish Rawat & Shikha Uniyal: Conformally flat totally real submanifoldof a Kaehlerian manifold, Ultra Scientist of Physical Science, Vol. 22 (2) M, (2010) 473-480.
- K. Matsumoto & I. Mihai: An obstruction to the existence of minimal totally real imme- rsions in a locally conformal KÄahler space form, Bull. Yamagata Univ. Natur. Sci. 14 (1997), No. 2, 83-87.

- S. Braidi & C. C. Hsiung: Submanifolds of spheres, Math. Z. 115 (1970), 235-251.
- 9. B. Y. Chen & K. Ogiue: On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
- C. S. Houh: Some totally real minimal surface in CP², Proc. Amer. Math. Soc. 40 (1973), 240-214.
- G. D. Ludden, M. Okumura & K. Yano: A totally real surface in CP², that is not totally geodesic, Proc. Amer. Math. Soc. 53 (1975), 186-190.
- 12. M. Kon: *Totally real submanifolds in a Kaehler manifold*, J. Differential Geometry 11 (1976), 251-257.
