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INTRODUCTION 
 
We have already seen the concept of  Hermitian doubly stochastic matrices.  In this paper introduce the Hermitian doubly 
stochastic matrix is developed in complex matrices. Recently Hill and Waters
Hermitian matrices as a generalization of s-real and s
Hermitian matrices, that is matrices whose entries are symmetric about the secondary diagonal.  Ann Lee
the matrix A, the usual conjugate A and secondary conjugate of A are related as 
permutation matrix with units in the secondary diagonal.
 
DEFINITION: 1  (2014) 
 
A matrix A  Cn x n is said to be Hermitian doubly stochastic matrix if A = A*and 

∑ �����
�
���  = 1, j = 1, 2, ………n 

and ∑ �����
�
���  = 1, i = 1, 2, ………n  and all │a ij

If A is doubly stochastic and also Hermitian then it is called a Hermitian doubly stochastic matrix.
 
DEFINITION: 2 
 
A matrix A  Cn x n is said to be k- Hermitian doubly stochastic matrix if 
Where K is a permutation matrix and K = (1) (2   3).
 
LEMMA: 
  
For A is k-Hermitian doubly stochastic matrix then  the following are equivalent.
(i)   � ̅= KA*K and A*=K � ̅K (ii) KA* = KA  (iii) A*K = AK   (iv)  (KA)* = A*K  (v)  (A*K)* = KA
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We have already seen the concept of  Hermitian doubly stochastic matrices.  In this paper introduce the Hermitian doubly 
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EXAMPLE:   
 

A = �
1 − � �
� 1 −�
−� � 1

�         � ̅= �
1 � −�
−� 1 �
� − � 1

� A* = �
1 −� �
� 1 −�
−� � 1

� and  k = (1) (2   3) =  �
1 0 0
0 0 1
0 1 0

� 

(i) K A*K = �
1 0 0
0 0 1
0 1 0

� �
1 − � �
� 1 −�
− � � 1

� �
1 0 0
0 0 1
0 1 0

�  =  �
1 − � �
� 1 −�
− � � 1

� = � ̅

K � ̅K = �
1 0 0
0 0 1
0 1 0

� �
1 � − �
− � 1 �
� −� 1

� �
1 0 0
0 0 1
0 1 0

� = �
1 −� �
� 1 − �
− � � 1

� = A* 

(ii) KA* = �
1 0 0
0 0 1
0 1 0

� �
1 −� �
� 1 −�
− � � 1

� = �
1 − � �
−� � 1
� 1 − �

� = KA 

(iii) A*K =�
1 − � �
� 1 − �
−� � 1

� �
1 0 0
0 0 1
0 1 0

� = �
1 � −�
� −� 1
−� 1 �

� = AK 

(iv) (KA)* = �
1 � − �
� −� 1
−� 1 �

� =  A*K(vi)     (A*K)* = �
1 − � �
− � � 1
� 1 −�

� =KA 

(v)  
 
RESULTS: KA = ������ and AK = ������ 
 
THEOREM: 1 
 
Let A  Cn x n is k-Hermitian doubly stochastic matrix then   � ̅= K A* K.   
  
Proof:  
 
K A* K = KAK where KA* = KA 
= ������K where KA = ������ 
= ��̅� K =  �K̅2 where ��= K                                                      
=  � ̅where K2 = I 
 
THEOREM: 2 
 
Let A  Cn x n is k-Hermitian doubly stochastic matrix then  K� ̅K = A*. 
 
Proof:       
                                    
K � ̅K  =  K��̅�where K =  �� 
= K������= KKA where ������ = KA 
= KKA* where KA = KA* 
= K2A* = A*  where K2 = I 
 
THEOREM: 3 
 

Let A, B  Cn x n is k-Hermitian doubly stochastic matrix then  
�

�
 (A + B ) is k-Hermitian doubly stochastic matrix. 

 
Proof:  Let A and B are  k-Hermitian doubly stochastic matrix if  � ̅= K A* K  and  ��  = K B* K . 

To prove 
�

�
 (A + B) is k-Hermitian doubly stochastic matrix we will show that 

�

�
 (� + ���������)=K 

�

�
 (A + B)* K 

Now K  
�

�
 (A + B )* K = K 

�

�
 (A* + B* ) K  = 

�

�
 K (A* + B *) K = 

�

�
 (K A* + K B *) K 

   = 
�

�
 (K A* K+ K B* K) = 

�

�
 (� ̅+ ��  ) = 

�

�
 (� + ���������) where  � ̅= K A* K   and  ��  = K B* K. 

 
THEOREM: 4 
 
If A and B are k-Hermitian doubly stochastic matrix then AB is also k-Hermitian doubly stochastic matrix. 
 
Proof: Let A and B are  k-Hermitian doubly stochastic matrix if  � ̅= K A* K   and  ��  = K B* K  
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Since A*and B*are also k-Hermitian doubly stochastic matrices then A* = K 
To  prove  A B is k-Hermitian doubly stochastic matrix we will show that AB = 
Now K (A B )* K= K(B*A*)K 
 
= K(K ��  K)( K � ̅K)Kwhere A* = K � ̅K and B* = K
= K2��  K2� ̅K2 = ��  � ̅where K2 = I 
= ������ = AB 
 
DEFINITION: 3 
 
A matrix A  Cn x n is said to be s-Hermitian doubly stochastic matrix if 
Where V is a exchange matrix. 
 
LEMMA: 
   
For A is s-Hermitian doubly stochastic matrix then the following are equivalent.
(i) �=̅ V A* V and A* = V �V̅  (ii)VA* = VA  (iii) A*V = AV    (iv) (VA)* = A*V    (v)  (A*V)* = VA
 
EXAMPLE:   
 

A = �
1 − � �
� 1 −�
− � � 1

�      � ̅= �
1 �
−� 1
� − �

(i) V A* V = �
0 0 1
0 1 0
1 0 0

� �
1 − �
� 1
−� �

V� ̅V = �
0 0 1
0 1 0
1 0 0

� �
1 � −
−� 1 �
� −� 1

(ii) VA* = �
0 0 1
0 1 0
1 0 0

� �
1 −� �
� 1 −�
− � � 1

(iii) A*V = �
1 −� �
� 1 − �
− � � 1

� �
0 0 1
0 1 0
1 0 0

(iv) (VA)* = �
� −� 1
−� 1 �
1 � − �

� =  A*V and  (v)   (A*V)* = 

 
RESULTS: VA = ������ and AV = ������ 
 
THEOREM: 5 
 
Let A  Cn x n is s-Hermitian doubly stochastic matrix then  
 
Proof: 
  
V A* V= VAV where VA* = VA              
= ������ V where VA = ������  

=  � ̅��V =   V2 where �� = K                   
=  � ̅ where V2 = I 
 
THEOREM: 6 
 
Let A  Cn x n is s-Hermitian doubly stochastic matrix then A* = V 
 
Proof 
  
V � ̅V  =  V� ̅��  where V = ��  
= V������ = VVA where ������ = VA 
= VVA* where VA = VA* 
= V2A* = A* where V2 = I         
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Hermitian doubly stochastic matrices then A* = K � ̅K and B* = K��  K.   
Hermitian doubly stochastic matrix we will show that AB = ������ = K (A B )* K 

  
K and B* = K��  K.   

Hermitian doubly stochastic matrix if �=̅ VA*V 

matrix then the following are equivalent. 
V  (ii)VA* = VA  (iii) A*V = AV    (iv) (VA)* = A*V    (v)  (A*V)* = VA 

− �
�
1
�    A* = �

1 −� �
� 1 − �
−� � 1

�     V =  �
0 0 1
0 1 0
1 0 0

� 

�
−�
1
� �

0 0 1
0 1 0
1 0 0

� = �
1 � −�
−� 1 �
� −� 1

� = � ̅

− �
�
1
� �

0 0 1
0 1 0
1 0 0

� = �
1 � −�
− � 1 �
� −� 1

� = �* 

�
1
� = �

−� � 1
� 1 − �
1 − � �

� = VA 

1
0
0
� = �

� − � 1
−� 1 �
1 � −�

� = AV 

A*V and  (v)   (A*V)* = �
− � � 1
� 1 −�
1 −� �

� = VA 

Hermitian doubly stochastic matrix then  � ̅= V A* V. 

Hermitian doubly stochastic matrix then A* = V �V̅. 
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THEOREM: 7 
 

Let A, B  Cn x n is s-Hermitian doubly stochastic matrix then  
�

�
 (A + B ) is s-Hermitian doubly stochastic matrix. 

 
Proof:      
      
Let A and B are  s-Hermitian doubly stochastic matrix if � ̅= V A* V and ��= V B* V . 

To prove 
�

�
 (A + B) is s-Hermitian doubly stochastic matrix we will show that 

�

�
 (� + ���������)=V 

�

�
 (A + B)* V 

Now V  
�

�
 (A + B )* V = V 

�

�
 (A* + B* ) V  = 

�

�
 V (A* + B *) V = 

�

�
 (V A* + V B *) V 

= 
�

�
 (V A* V+ V B* V)  = 

�

�
 (� ̅+ ��  ) = 

�

�
 (� + ���������) where  � ̅= V A* V  and  ��  = V B* V 

 
THEOREM: 8 
 
If A and B are s-Hermitian doubly stochastic matrix then AB is also s-Hermitian doubly stochastic matrix. 
 
Proof: Let A and B are  s-Hermitian doubly stochastic matrix if � ̅= V A* V and ��  = V B* V . 
Since A*and B*are also s-Hermitian doubly stochastic matrices then A* = V � ̅ V and B* = V ��   V 
To  prove  A B is s-Hermitian doubly stochastic matrix we will show that AB = ������ = V (A B )* V 
Now V (A B )* V= V(B*A*)V  = V(V ��   V)( V � ̅ V)V  where A* = V � ̅ V and B* = V ��   V 
= V2��   V2� ̅ V2  = ��  � ̅ where V2 = I 
= ������ = AB 
 
DEFINITION: 4 (2009) 
A matrix A  Cn x n is said to be s-k-Hermitian doubly stochastic matrix if  

(i) A = KVA*VK (ii)   � ̅ = KV� ̅VK 
(iii)       A = VKA*KV (iv)   � ̅ = VK� ̅KV 
 

Where V is a exchange matrix and K is a permutation matrix and K = (1) (2    3). 
 
THEOREM: 9 
 
Let A  Cn x n is s-k-Hermitian doubly stochastic matrix then   

(i) A* = KVA*VK                   (ii)    � ̅ = KV� ̅VK 
(iii)       A* = VKA*KV                    (iv)   � ̅ = VK� ̅KV 

 
Proof: 
 
KVA*VK  = K(VA*V)K = K� ̅ K where VA*V   = � ̅
= A* where K� ̅K  = A*  
KV� ̅VK  = K(V� ̅V)K  = KA*K where V� ̅V   = A* 
= � ̅ where KA*K = � ̅  
VKA*KV  = V(KA*K)V = V�V̅ where KA*K   = � ̅
= A* where V�V̅ = A* 
VK�K̅V  =V(K�K̅)V = V A* V where K�K̅   = A*  
= � ̅where V A* V = � ̅   
 
EXAMPLE:   
 

A = �
1 − � �
� 1 −�
−� � 1

�         � ̅= �
1 � −�
−� 1 �
� − � 1

�A* = �
1 − � �
� 1 − �
−� � 1

�  

K = �
1 0 0
0 0 1
0 1 0

�     V =  �
0 0 1
0 1 0
1 0 0

�         KV = �
0 0 1
1 0 0
0 1 0

�       VK = �
0 1 0
0 0 1
1 0 0

� 

(i) KVA*VK =  �
0 0 1
1 0 0
0 1 0

� �
1 −� �
� 1 −�
− � � 1

� �
0 1 0
0 0 1
1 0 0

� = �
1 − � �
� 1 −�
−� � 1

� = A* 
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(ii) KV�V̅K  =  �
0 0 1
1 0 0
0 1 0

� �
1 � − �
− � 1 �
� −� 1

� �
0 1 0
0 0 1
1 0 0

� = �
1 � −�
− � 1 �
� −� 1

� = � ̅

(iii) VKA*KV = �
0 1 0
0 0 1
1 0 0

� �
1 − � �
� 1 −�
−� � 1

� �
0 0 1
1 0 0
0 1 0

�= �
1 −� �
� 1 − �
−� � 1

� = A* 

(iv) VK�K̅V = = �
0 1 0
0 0 1
1 0 0

� �
1 � − �
−� 1 �
� −� 1

� �
0 0 1
1 0 0
0 1 0

� = �
1 � − �
−� 1 �
� −� 1

� = � ̅

 
THEOREM:10 
 

Let A, B  Rn x n is s-k-Hermitian doubly stochastic matrix then  
�

�
(A + B ) is s-k-Hermitian doubly stochastic matrix. 

 

Proof:  Let A and B are  s-k-Hermitian doubly stochastic matrix if A* =KV A* VK and B* = KVB*VK.   To prove 
�

�
(A+B) is s-k-

Hermitian doubly stochastic matrix we will show that 
�

�
(A+B)*= KV 

�

�
(A+B)*VK 

Now KV  
�

�
(A + B )* VK = K( V 

�

�
(A + B )* V)K =  K 

�

�
 (� + ��������� ) K using theorem (7) 

= 
�

�
(A + B )* using theorem (3)   

  
THEOREM: 11 
 
If A and B are s-k-Hermitian doubly stochastic matrix then AB is also s-k-Hermitian doubly stochastic matrix. 
 
Proof:     
 
Let A and B are s-k-Hermitian doubly stochastic matrix if A *=KV A* VK and B* = KVB*VK. 
To  prove A B is s-k-Hermitian doubly stochastic matrix we will show that (AB)* = KV(A B )* VK 
Now KV(A B )* VK = K(V(A B )* )VK = K(������ ) K using theorem (8) 
          = (AB)* using theorem (4)    
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