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INTRODUCTION 
 

Matrices provide a very powerful tool for dealing with linear models. Bimatrices are still a powerful and an advanced tool wh
can handle over one linear model at a time. Bimatrices are useful when time bound comparisons are needed in the analysis of a
model. Bimatrices are of several types. Unitary matrices are a firsthand tool in solving many problems in mathematical and 
theoretical physics and the diversity of the problems necessitates to keep improving it. For real matrices, unitary is the sa
orthogonal .In fact there are some similarities between orthogonal matrices and unitary matrices. Here we consider all matrices 

belongs to n nc   . For any matrix A , Adenotes the conjugate transpose of 

bimatrices as a generalization of unitary matrices. Some of the properties of unitary matrices 
?; Vatssa ?) are extended to unitary bimatrices. Some important results of unitary matrices 
2010) are generalized to unitary bimatrices. 
 

Definition 1.1 (Vasantha Kandasamy et al., 2005
 

A bimatrix 
B

A  is defined as the union of two rectangular array of numbers

written as 1 2BA A A  with 1 2A A  (except zero and unit bimatrices) where   
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‘ ’ is just the notational convenience (symbol) only. 
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ABSTRACT 

Unitary bimatrices are studied as a generalization of unitary matrices. Some of the properties of 
unitary matrices are extended to unitary bimatrices. Some important results of unitary matrices are 
generalized to unitary bimatrices.  
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denotes the conjugate transpose of A . In this paper we have developed unitary 

bimatrices as a generalization of unitary matrices. Some of the properties of unitary matrices (Hari kishan
ed to unitary bimatrices. Some important results of unitary matrices (Rukmangadachari

2005) 
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Definition 1.2 (Vasantha Kandasamy et al., 2005) 
 

Let 1 2BA A A   and 1 2BB B B   be any two m n  bimatrices. The sum BC of the bimatrices BA  and BB  is defined as 

B B BC A B  = 1 1 2 2( ) ( )A B A B   , where 1 1A B  and 2 2A B are the usual addition of matrices.  

 
Definition 1.3 (Vasantha Kandasamy et al., 2005) 
 

If 1 2BA A A  and 1 2BB B B  are both n n  square bimatrices then, the bimatrix multiplication is defined as, 

1 1 2 2( ) ( )B BA B A B A B   . 

 
Definition 1.4 (Vasantha Kandasamy et al., 2005) 
 

Let 1 2BA A A   and 1 2BB B B   be two bimatrices ,then BA  and BB  are said to be equal if and only if 1A and 1B  are 

identical and 2A and 2B  are identical. That is 1 1A B and 2 2A B . 

 
Definition 1.5 (Vasantha Kandasamy et al., 2005) 
 

If 1 2BA A A   is a m m square bimatrix, then the identity bimatrix is defined as  1 2BI I I  . 

 
Remark 1.6 (Vasantha Kandasamy et al., 2005) 
 

If 1 2BA A A   be a bimatrix, then we call 1A  and 2A  as the component matrices of the bimatrix BA .  

 
II Unitary Bimatrices 
 
In this section some of the properties of unitary matrices are extended to unitary bimatrices. Some important results of unitary 
matrices are generalized to unitary bimatrices. 
 
Definition 2.1     
 

Let 1 2BA A A   be an n n  complex bimatrix. (A bimatrix BA  is said to be complex if it takes entries from the complex 

field). BA  is called an unitary bimatrix if B B B B BA A A A I    (or) 
T

BA 1
BA . That is,

1 1 2 2 1 1 2 2 1 2A A A A A A A A I I        . 

 
Example 2.2 
 

Let  1 2BA A A   

 

1 1 1 11 1 1 1
;

1 1 1 12 22 2
B B

i i i i i i i i
A A

i i i i i i i i
             

                         
 

1 1 1 11 1 1 1

1 1 1 12 22 2
B B

i i i i i i i i
A A

i i i i i i i i


                
                             

 

 

B BA A
 1 2

1 0 1 0

0 1 0 1
I I

   
      
   

         

 

B B BA A I                                                                                                                                                                                     1                        
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Similarly, we can find that B B BA A I                                                                                                                                     2   

From (1) and (2), we get 
B B

A A

B B B
A A I  . 

Hence, 
B

A
 
is a unitary bimatrix. 

 
Theorem 2.3 
 
Product of two unitary bimatrices of the same order is a unitary bimatrix. 
 
Proof           
 

Let 1 2BA A A   and 1 2BB B B   be unitary bimatrices  so that   1 1 2 2 1 1 2 2 1 2 ;A A A A A A A A I I       

1 1 2 2 1 1 2 2 1 2 ;B B B B B B B B I I        (or) 
1 1; .T T

B B B BA A B B    

 

Now ( )( )B B B BA B A B         1 2 1 2 1 2 1 2A A B B A A B B


                                          

                                       1 1 2 2 1 1 2 2A B A B A B A B


    

                                          1 1 2 2 1 1 2 2A B A B A B A B
    

 
 

                                      1 1 2 2 1 1 2 2A B A B B A B A                             

                                        1 1 1 1 2 2 2 2A B B A A B B A            

                                        1 1 2 2A IA A IA    

                                        1 1 2 2A A A A  
 

                                     1 2I I   

 

( )( )B B B B BA B A B I                                                                                                                                                              3
 

Similarly, we can prove that  ( ) ( )B B B B BA B A B I                                                                                                              4    

From (3) and (4) we get, ( )B BA B ( )B BA B   ( ) ( )B B B B BA B A B I   

 
Hence, the product of two unitary bimatrices is a unitary bimatrrix. 
 
Example 2.4 
 

Let 
1 2 1 11 1

1 1 2 17 2
B

i i i
A

i i i

    
          

 and
31 1

22 3
B

i i i
B

i i i

  
        

 
 

( )B BA B 
1 2 1 1 31 1 1 1

1 1 2 1 27 2 2 3

i i i i i i

i i i i i i

         
                           

 

 

 
3 2 1 1 3 31 1

1 3 214 2 2 1 3 3
B B

i i i
A B

i i i
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3 2 1 1 3 3 11 1

1 3 214 2 2 3 3
B B

i
A B

i i i i i

        
            

  

  

 

 B BA B  B BA B


 
 

3 2 1 3 2 1 1 3 3 1 3 3 11 1

1 3 2 1 3 214 2 2 1 3 3 3 3

i i i i

i i i i i i i i

                   
                                   

 

 

1 0 1 0

0 1 0 1

   
    
   

 1 2I I   

 

  B B B B BA B A B I

                                                                                                                                                          5  

 

Similarly, we can find that  ( )B B B B BA B A B I 
                                                                                                             

 6            

 

From (5) and (6) we get, ( )B BA B ( )B BA B   ( ) ( )B B B B BA B A B I   

 

Hence, B BA B  is a unitary bimatrix. 

 
Theorem 2.5 
 
Inverse of a unitary bimatrix  is a unitary bimatrix. 
 
Proof 
 

For a unitary bimatrix BA , B BA A
B B BA A I   or 

1T
B BA A .  

 

     

   

1 11 1
1 2 1 2

1 1 1 1
1 1 2 2

B BA A A A A A

A A A A

   

 
   

   
 

 

 

                   1 1 1 1
1 2 1 2A A A A

                                                               

                       1 1 1 1
1 2 1 2A A A A

 
      

    

                     1 1 1 1
1 1 2 2A A A A

 
      

                   1 2I I    
 

1 1( )( )B B BA A I                                                                                                                                                                         7
          

 

Similarly, we can prove that  1 1( )B B BA A I                                                                                                                          8
 

 

From (7) and (8), we get     1 1 1 1( )B B B B BA A A A I
      .  

 

Hence, 
1

BA
  is a unitary bimatrrix.  
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Example 2.6   
 

Let   1 2

0 1 2 11 1

1 2 0 15 2
B

i i
A A A

i i

   
            

 

0 1 2 11 1

1 2 0 15 2
B

i i
A

i i


 

   
  

 

1 1     
 

1 0 1 2 11 1

1 2 0 15 2
B

i i
A

i i
       
       

  

 

   1 1 0 1 2 0 1 2 1 11 1

1 2 0 1 2 0 1 15 2
B B

i i i i
A A

i i i i


                  

                         
 

 

   1 1 0 1 2 0 1 2 1 11 1

1 2 0 1 2 0 1 15 2
B B

i i i i
A A

i i i i


 

                
                         

 

 

1 2

1 0 1 0

0 1 0 1
I I

   
      
   

      

 
1 1( )( )B B BA A I                                                                                                                                                                      9

 
 

Similarly, we can find that  1 1( )B B BA A I                                                                                                                         10    

 

From (9) and (10) we get,    1 1 1 1( )B B B B BA A A A I
      . 

 

Hence, 
1

BA
  is a unitary bimatrix. 

 
Theorem 2.7 
 
Transpose of a unitary bimatrix is a unitary bimatrix. 
 
Proof  
 

For a unitary bimatrices ,B B B B B BA A A A A I   (or) 
1T

B BA A


  

 

       1 2 1 2

T TT T
B BA A A A A A


    
 

      

                          1 2 1 2
T T T TA A A A

     
  

  

                          1 1 2 2 1 2
T T T TA A A A I I

       
      

  

 

   T T
B B BA A I



                                                                                                                                                                      11  
  

Similarly, we can prove that    T T
B B BA A I



                                                                                                                       12  
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From (11) and (12), we get       T T T T
B B B B BA A A A I

 

    . 
 

Hence 
T
BA

  
 is a unitary bimatrix . 

Example 2.8 
 

Let 1 2

1 1 31 1

1 12 2 3
B

i i i
A A A

i i i

    
           

     
 

1 1 31 1

1 12 2 3

T
B

i i i
A

i i i

   
          

         
 

 
1 1 31 1

1 12 2 3

T
B

i i i
A

i i i

      
          

                            

  
1 1 1 1 3 31 1 1 1

1 1 1 12 2 2 23 3

T T
B B

i i i i i i
A A

i i i i i i


             
                                  

                                               

 

1 2

1 0 1 0

0 1 0 1
I I

   
      
   

 

 

 

   T T
B B BA A I




   

                                                                                                                                                                 13   
 

Similarly, we can find that    T T
B B BA A I



                                                                                                                         14  

 

From (13) and (14), we get       T T T T
B B B B BA A A A I

 

  . 

 

Hence 
T
BA

 
is a unitary bimatrix.  

 
Theorem 2.9 
 
The determinant of a unitary bimatrix has absolute value 1. 
 

Proof 
 

If BA  is a unitary bimatrix then we have B B B B BA A A A I    (or) 
1T

B BA A


 .  

 

     1 detB B B B Bdet A A det A A I                                                                   

 

  1 1T
B Bdet A A    

 

det det 1 1T
B BA A    

 

det det 1 1B BA A    

 

det det 1 1B BA A    
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2
det 1BA  det 1BA   (Where det BA  may now be complex) 

 

Hence the determinant of a unitary bimatrix has absolute value 1. 
Example 2.10 
 

Let 
1 1 31 1

1 22 3 1
B

i i
A

i i

  
         

   

 

1 1 31 1

1 22 3 1
B

i i
A

i i
 

 
1 1 1 1      

 

Hence, 1BA  . 

 
Theorem 2.11 
 
Conjugate of a unitary bimatrix is a unitary bimatrix. 
 
Proof 
 

Let 1 2BA A A   be unitary bimatrix. That is , B B B B BA A A A I    (or) 
1T

B BA A
.
 

 

1 2BA A A   

 

1 2 1 2( )( )B BA A A A A A     

 

1 2 1 2( )( )B BA A A A A A      

 

1 1 2 1( )B BA A A A A A      

 
Taking conjugate on both sides, 
 

1 1 2 2B BA A A A A A   
   

 

B B B BA A I I    

 

1 2I I   

 

 B B BA A I

                                                                                                                                                                        15  

 

Similarly, we can find that    B B BA A I



                                                                                                                       

 16  

 

From (15) and (16), we get    B B B B BA A A A I
 
                                                                               

   

Hence, BA  is a unitary bimatrix. 
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Example 2.12 
 

Let
1 0 1 21 1

1 1 2 02 5
B

i i
A

i i

   
         

 

1 0 1 21 1

1 1 2 02 5
B

i i
A

i i

    
        

     

                                                       

 

1 0 1 2 0 1 21 1 1 1

1 1 1 1 2 0 1 2 02 2 5 5
B B

i i i i i
A A

i i i


              
                         

      

 

 
            

           

1 2

1 0 1 0

0 1 0 1
I I

   
      
   

     

 

 B B BA A I

                                                                                                                                                                          17

 
 

Similarly, we can find that    T
B B BA A I



 .                                                                                                                         18   

 

From (17)  and (18) ,we get    B B BA A A A I
 
       

 

Hence BA  is a unitary bimatrix .  

 
Theorem 2.13 
 
Conjugate transpose of a unitary bimatrix is a unitary bimatrix. 
 
Proof   
 

Let 1 2BA A A   be unitary bimatrix. That is, B B B B BA A A A I   (or) 
1T

B BA A
. 

 

Consider 1 2 1 2( )( )B BA A A A A A     

              1 2 1 2( )( )B BA A A A A A      

              1 1 2 2( )B BA A A A A A       

 
Taking conjugate transpose  on both sides, 
 

   1 1 2 2B BA A A A A A
 

   
 

 

 1 1 2 2( ) ( )B BA A A A A A


      
 

          

                1 2I I   

 

 B B BA A I 
   

                                                                                                                                                                             19       

 

Similarly, we can prove that B B BA A I 
                                                                  

                                                                 20           
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From (19) and (20), we get B BA A
B B BA A I  . 

 

Hence, BA
 is a unitary bimatrix. 

Example 2.14  
 

Let
1 2

1 1 1 11 1

1 1 1 12 2
B

i i i i
A A A

i i i i

       
            

      

 

                        
1 1 1 11 1

1 1 1 12 2
B

i i i i
A

i i i i
       
             

 

 
1 1 1 1 1 1 1 11 1 1 1

1 1 1 1 1 1 1 12 2 2 2
B B B B

i i i i i i i i
A A A A

i i i i i i i i

  
                      

                                        
     

      

                              1 2

1 0 1 0

0 1 0 1
I I

   
      
     

                   

 B B BA A I
                                                                                                                                                                            21   

   

Similarly, we can find that ( )B B BA A I   
                                                                      

                                                         22
 

 

From (21) and (22), we get    B B B B BA A A A I
 

      

 

Hence, BA
 is a unitary bimatrix. 

 
Theorem 2.15 
 
Any integral power of a unitary bimatrix is also a unitary bimatrix. 
 
Proof 
 

Let 1 2BA A A   be unitary bimatrix. That is, B B B B BA A A A I    (or) 
1T

B BA A
. 

 

Consider 1 2 1 2( )( )B BA A A A A A     

                          1 2 1 2( )( )A A A A     

                          1 1 2 2( )A A A A     

                          1 2I I        

 

B B BA A I                                                                                                                                                                                    23
 

 

Similarly, we can prove that B B BA A I  . 

 

Again,       
2

B B B B B BA A A A A A    

                            1 2 1 2 1 2 1 2( )( ) ( )( )A A A A A A A A             
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                           1 2 1 2 1 2 1 2( )( ) ( )( )A A A A A A A A               

                            1 1 2 2 1 1 2 2( ) ( )A A A A A A A A              

                            
  1 2 1 2

1 2

I I I I

I I

  

 
 

 

 
2

B B BA A I     

 

Similarly, we can prove that  
2

B B BA A I  .  

 

Hence, 
2
BA  is a unitary bimatrix.  

 

Assume that
k
BA  is a unitary bimatrix. That is,    

k k

B B B B BA A A A I                                                                   24  

 

To prove 
1k

BA 
 is a unitary bimatrix. 

 

 
1k

B BA A


    
k

B B B BA A A A     

                   .B BI I   (Since by (23) and (24)) 

                   
2
BI  

  
1k

B B BA A I


    

Similarly, we can prove that  
1k

B B BA A I


  .  

 
Hence, any integral power of a unitary bimatrix is also a unitary bimatrix. 
 
Example 2.16 
 

Let 1 2

3 11 1

12 23
B

i i
A A A

ii

   
           

 

 
2 3 3 1 11 1 1 1

1 12 2 2 23 3
B B B

i i i i
A A A

i ii i

         
                            

      

 

 
2 1 3 1 11 1

1 12 23 1
B

i i i
A

i ii

     
        

    

 

 2 1 3 1 11 1

1 12 23 1
B

i i i
A

i ii

      
         

 

 

 2 2 1 3 1 3 1 1 1 11 1 1 1

1 1 1 12 2 2 23 1 3 1
B B

i i i i i i
A A

i i i ii i
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                1 2

1 0 1 0

0 1 0 1
I I

   
      
          

 2 2
B B BA A I




                                                                                 

                                                                                       25
 

 

Similarly, we can find that  2 2
B B BA A I




                                                                       

                                                     26             

 

From (25) and (26), we get      2 2 2 2
B B B B BA A A A I

 

  . 

 

Hence, 
2
BA  is a unitary bimatrix.  

 
Remark 2.17 
 
Powers of unitary bimatrices occurring in applications may sometimes be familiar real matrices. 
 
Example 2.18 
 
Let  

1 2

1 3 1 11 1

1 12 23 1
B

i i i
A A A

i ii

     
          

         

              

2 1 3 1 3 1 1 1 11 1 1 1

1 1 1 12 2 2 23 1 3 1
B

i i i i i i
A

i i i ii i

                  
                                     

                         

 

2 1 3 2 2 2 21 1

2 2 2 22 43 1
B

i i i
A

i ii

      
           

 

3 2 2 1 3 1 3 2 2 2 2 1 11 1 1 1
.

2 2 2 2 1 12 2 4 23 1 3 1
B B

i i i i i i
A A A

i i i ii i

                
                                

  

 

 3
1 2

1 0 1 0

0 1 0 1
B BA I I I

    
              

          

 

Hence, 
3
B BA I  . 

 
Theorem 2.19 
 
Unitary bimatrices are normal. 
 
Proof 
 

Let 1 2BA A A   be unitary bimatrix. That is, B B B B BA A A A I    (or) 
1T

B BA A
. 

 

Consider 1 2 1 2( )( )B BA A A A A A     

               1 2 1 2( )( )B BA A A A A A      
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               1 1 2 2( )B BA A A A A A      
1 2
B BI I       

               
   1 2 1 2B BA A A A A A

   
 

               
   1 2 1 2B BA A A A A A      

               1 1 2 2B BA A A A A A   
 

               1 2B BA A I I  
 

 

B B BA A I 
                                                                                                                                                                              

 27
 

 

Similarly we can find that B B BA A I 
                                                                                                                                    

 28   

 

From (27) and (28), we get  B B B B BA A A A I    

 
Hence unitary bimatrices are normal. 
 
Example 2.20      
  

Let 
  1 2BA A A  = 

0 1 2 1 2 11 1

1 2 0 1 1 25 7

i i i

i i i

     
           

  

 

0 1 2 1 2 11 1

1 2 0 1 1 25 7
B

i i i
A

i i i
       
          

   

 

0 1 2 0 1 2 1 2 1 1 2 11 1

1 2 0 1 2 0 1 1 2 1 1 25 7
B B

i i i i i i
A A

i i i i i i


                
                               

   

           1 2

1 0 1 0

0 1 0 1
I I

   
      
   

  

B B BA A I 
                                                                                                                                                                              

 29
 

 

0 1 2 0 1 2 1 2 1 1 2 11 1

1 2 0 1 2 0 1 1 2 1 1 25 7
B B

i i i i i i
A A

i i i i i i


                
                                 

 

1 2

1 0 1 0

0 1 0 1
B BA A I I    

      
   

  

B B BA A I 
                                                                                                                                                                              

 30   

 

From (29) and (30), we get B B B B BA A A A I    

 

Hence, BA  is normal. 

 
Result 2.21 
 
Sum of two unitary bimatrices need not be a unitary bimatrix. 
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Example 2.22    
 
Let   
 

1 1 31 1

1 12 2 3
B

i i i
A

i i i

   
         

;     
1 3 1 11 1

1 12 23 1
B

i i i
B

i ii

     
        

   

 

2 1 3 1 2 1 31 1

2 21 3 2 1 3 1
B B

i i i i i
A B

i i i i

         
     

            
 

 
2 1 3 1 2 1 31 1

2 21 3 2 1 3 1
B B

i i i i i
A B

i i i i

         
     

           
  

 

  
10 2 3 2 2 3 10 2 3 2 2 3 2 2 31 1

4 42 2 3 10 2 3 2 2 3 2 2 3 6 2 3
B B B B

i
A B A B

i

         
      

           
          

 

  B B B BA B A B I


  
                                                                                                                                                   

 31
 

 

Similarly, we can find that    B B B BA B A B I


                                                                                                            32    

 

From (31) and (32), we get    B B B BA B A B


      B B B BA B A B I


    . 

 

Hence, B BA B  is not a unitary bimatrix. 

 
Conclusion 
 
Some of the properties of unitary matrices are proved for unitary bimatrices. In a similar way all the properties of unitary matrices 
can be verified for unitary bimatrices. 
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