

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 6, Issue, 12, pp.11062-11075, December, 2014 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

ASSESSMENT OF SEVERITY OF PREGNANCY INDUCED HYPERTENSION BY ESTIMATION OF PLATELETS, LIVER ENZYMES AND EARLY DETECTION OF HELLP SYNDROME

^{1,*}Dr. P. Kumudha, ²Dr. R. Vinodha and ³Dr. D. Bobby

¹Department of Physiology, Government Mohan Kumaramangalam Medical College, Salem, Tamilnadu, India ²Department of Physiology, Thanjavur Medical College, Thanjavur, Tamilnadu, India ³Department of Physiology, Government Villupuram Medical College, Villupuram, Tamilnadu, India

ABSTRACT
Introduction: In any community mother and children constitute a priority group. They comprise approximately 71.14 percent of the Population of the developing countries. Hypertensive disorders complicating pregnancy contribute greatly to maternal morbidity and Mortality. The present study was undertaken to assess the severity of pregnancy induced hypertension in the antenatal mothers at Government Raja Mirasudhar Hospital, Thanjavur. Aim and Objectives: To study early assessment of severity of pregnancy induced hypertension by estimating platelets, liver enzymes, peripheral smear and haematocrit values and early detection of HELLP syndrome. Materials and Methods: The study design was cross sectional study. This study was carried out in the Department of Physiology Thanjavur Medical College, Thanjavur.
control and 40 pregnancy induced hypertensive women, as study group. Both groups were correlated with age, parity and period of gestation. The subjects were collected from antenatal clinic, in patients ward and labour room from Department
of obstetrics & Gynaecology, Raja mirasdhar Hospital, Thanjavur. The subjects were categorized as normotensive control, mild pregnancy induced hypertensive group by the presence of varying degrees of blood pressure and proteinuria. The presence of associated features of HELLP syndrome (Hemolysis, elevated liver enzymes – SGOT, SGPT > 70 U/L, LDH > 600 U/L) was assessed in patients in all the three classes of Thrombocytopenia. Results: Statistical analysis was done by using the Statistical Package for Social Sciences (SPSS) X version. The results were analyzed by the Chi - Square test and ANOVA study. The mean age of control group, study group was 24.95 ± 3.55 yrs, 24.78 ± 3.59 yrs respectively. In normotensive control, the mean systolic & diastolic BP was 116.70 ± 6.19 , 75.80 ± 5.04 mmHg respectively. In mild PIH, the mean systolic & diastolic BP was 144.21 ± 6.24 , 94.41 ± 4.35 mmHg respectively. In severe PIH the mean platelet count was 1.3900 ± 0.5909 lakhs / mm ³ . The test results has shown significant reduction in platelet count in the mild & severe PIH were significant (P < 0.0005). The mean SGOT, SGPT, LDH in normotensive were 27.58 ± 9.28 , 18.12 ± 7.03 , 322.20 ± 84.46 U/L respectively. The mean SGOT, SGPT, LDH in mild PIH were 32.42 ± 17.64 , 23.61 ± 14.61 , 560.72 ± 224.50 U/L respectively. The mean SGOT, SGPT, LDH in mild PIH were 32.64 , 801.73 ± 224.54 U/L respectively. The mean SGOT, SGPT, LDH in mild PIH were 27.58 ± 9.28 , 18.12 ± 7.03 , 322.20 ± 84.46 U/L respectively. The mean SGOT, SGPT, LDH in mild PIH were 32.64 , 801.73 ± 224.50 U/L respectively. The mean SGOT, SGPT, LDH in mild PIH were 32.64 , 801.73 ± 224.50 U/L respectively. The mean SGOT, SGPT, LDH in mild PIH were 32.64 , 801.73 ± 224.51 U/L respectively. The mean SGOT, SGPT, LDH in mild PIH were 32.64 , 801.73 ± 224.50 U/L respectively. The mean SGOT, SGPT, LDH in mild PIH were 32.64 , 801.73 ± 224.50 U/L respectively. The group meas were significant (P < 0.0005). Het 4.55 ± 0.24 ,

Copyright © 2014 Dr. Kumudha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

In any community mother and children constitute a priority group. They comprise approximately 71.14 percent of the Population of the developing countries. Mother and children

*Corresponding Author: Kumudha

Department of Physiology, Government Mohan Kumaramangalam Medical College, Salem, Tamilnadu, India.

not only constitute a large group but they are also a 'Vulnerable' or special risk group (Park *et al.*, 2009). Hypertensive disorders complicating pregnancy are common and form one of the deadly Triad, along with haemorrhage and infection that contribute greatly to maternal morbidity and Mortality (Gary Cunningham *et al.*, 2005). Hypertensive disease of pregnancy account for 20% of all maternal deaths in India and 15% of maternal deaths globally (Vatsla Dadhwal,

Deepika Deka). In India about two-thirds of perinatal deaths are due to low birth weight, among one of the cause is toxemia of pregnancy (Park et al., 2009). It is associated with a 20 fold increase in perinatal mortality (Charles et al., 1997). How pregnancy incites or aggravates hypertension remains unsolved despite decades of intensive research. In addition to essential hypertension, a unique form of hypertension that occurs only during pregnancy, called as pregnancy induced hypertension, also commonly known as preeclampsia. It is characterized by the onset of hypertension, proteinuria and edema, usually during III trimester. Management of this disorder differs significantly from that of chronic hypertension. Therefore, it is important to distinguish the two entities as clearly as possible. Preeclampsia complicates 5-7 percent of all pregnancies. The disorder occurs with increased frequency among young, nulliparous women. Normal pregnancy is associated with decreased maternal sensitivity to vasopressor, expansion of intravascular space, increased intravascular volume and decline in BP in the early gestation, then gradual rise in blood pressure to normal level near term. Women destined to develop preeclampsia do not exhibit normal refractoriness to vasopressors. As a result, normal expansion of the intravascular space and intravascular volume is reduced. In addition to the classic findings of hypertension, proteninuria, and edema, the laboratory abnormalities include elevation in the hematocrit, lactate dehydrogenase, serum transaminases (David et al., 4th edition). The HELLP syndrome (Hemolysis, Elevated liver enzymes and low platelets) is a variant of severe preeclampsia. It was identified in almost 20 percent of women with severe preeclampsia (Gary Cunningham et al., 2005). As understood from its definition, the syndrome is together with disorder of liver functions.

Increased maternal and fetal morbidity and mortality due to thrombocytopenia and hemolytic anemia. Maternal mortality is reported in between 0-24% in patients with HELLP syndrome. Perinatal mortality is reported in between 37% and 85% in babies of these pregnancies (Selahattin kumru *et al.*, 2005). The importance lies in early diagnosis, the early and timely diagnosis, especially that of severe preeclampsia, is quite essential in view of the significant complications that can Ensue (Chee Jing Jye *et al.*, 2009).

Aim and Objectives

To study early assessment of severity of pregnancy induced hypertension by estimating platelets and liver enzymes, peripheral smear and haematocrit values. To study the influence of varying degrees of Blood pressure and proteinuria on severity of pregnancy induced hypertension.

To study early detection of HELLP syndrome in pregnancy induced hypertension.

MATERIALS AND METHODS

The study design was cross sectional study. This study was carried out in the Department of Physiology, Thanjavur Medical College, Thanjavur. The study was carried out in 40 normotensive pregnant women, as control and 40 pregnancy induced hypertensive women, as study group. Both groups were correlated with age, parity and period of gestation. The

subjects were collected from antenatal clinic, in patients ward and labour room from Department of obstetrics and Gynaecology, The subjects were categorized as normotensive control, mild pregnancy induced hypertension and severe pregnancy induced hypertensive group by the presence of varying degrees of blood pressure and proteinuria.

The criteria for mild PIH,

• Blood pressure
$$\geq \frac{140}{90}$$
 mmHg $< \frac{160}{110}$ mmHg

• Proteinuria 1+ (Dispstick test).

The criteria for severe PIH,

• Blood pressure
$$\geq \frac{160}{110}$$
 mmHg

- Proteinuria 3+, 4+
- Thrombocytopenia
- Elevated transaminases

To assess the severity of pregnancy induced hypertension, the following laboratory investigations were undergone.

- Urine analysis (Evidence of proteinuria)
- Platelet count
- Peripheral smear study (Evidence of hemolysis)
- Liver enzymes study (SGOT, SGPT, LDH)
- Haematocrit estimation.

The presence of hepatic abnormalities, altered haematological parameters & occurrence of HELLP syndrome were assessed. In platelet count, values > 1,50,000 cells /mm³ was considered as normal.

Platelet count < 50,000 cells/mm³ considered as class 1 (More severe Thrombocytopenia)

Platelet count between 50,000 to 1,00,000 cells/mm³ as class 2 (Moderate severe Thrombocytopenia)

Platelet count between 1,00,000 to 1,50,000 cells/mm³ as class 3 (Less severe Thrombocytopenia)

The presence of associated features of HELLP syndrome (Hemolysis, elevated liver enzymes – SGOT, SGPT > 70 U/L, LDH > 600 U/L) was assessed in patients in all the three classes of Thrombocytopenia.

Inclusion Criteria

Pregnant women of varying degrees of PIH in the age group of 19-35 years, in the II and III trimester were selected. Healthy normotensive women in the age group of 19-35 years, in the II and III trimester were selected as control.

Exclusion Criteria

The subjects were excluded from study with following histories and findings. History of Anaemia, cardiovascular

disease, diabetes, essential hypertension or secondary hypertension due to some other pathology, hepatic disorders, haemorrhagic disorders, asthma.

Materials for the Study

- Proforma to record the subject details and clinical examination findings.
- Semi auto analyser for recording the enzyme levels.
- Grease free glass slides for preparing peripheral smear study for platelet estimation and to rule out haemolysis.
- Glass tubes for collecting Blood samples for enzyme study.
- EDTA coated glass tubes for haematocrit estimation and wintrobe's haematocrit tube.
- Disposable syringes.
- 14% Magnesium sulphate
- Sphygmomanometer
- Stheoscope.
- Diagnostic reagent strips for urine analysis.

Methodology

The study was carried out after explaining the procedure in detail and getting informed consent from the subjects. The Experimental protocol included,

- Recording of a detailed History from the study subjects.
- A thorough clinical examination of the study subjects.

A Detailed history regarding name, address, IP/OP Number, Age, occupation, LMP, EDD, Parity, Chief complaints, obstetric history, Menstrual, Marital History, Past history regarding previous medical illness, Family history regarding hypertension and Family onset pregnancy induced hypertension. A detailed General Examination was carried out in the subjects height, weight, pulse Rate, BP, nourishment, Built, Examination of thyroid, Pedal or generalized Edema, Cyanosis, Clubbing, icterus, Lymphadenoparthy, Examination of CVS, RS, CNS. Local examination included per abdominal examination, for Determining GA, fetal viability. Laboratory investigations include Hb%, BT, CT, Blood urea, sugar, serum creatinine, bilirubin were recorded in addition to investigations under study.

Measurement of Blood Pressure

The participants were instructed regarding the procedure and getting informed consent.

- Blood Pressure measured by using sphigmomanometry
- Appropriate sized cuff, 1.5 times the mid arm circumference was used.
- Subjects were positioned lying at 45° angle or in sitting position with cuff at heart level.
- Recorded either in the right or left arm,
- For recording systolic BP Korotkoff phase 1 sound was taken
- For recording diastolic BP, Korotkoff Phase 5 was taken.
- The blood pressure varies greatly during every day and isolated readings must be checked after a period of rest. For the diagnosis of hypertension it is accepted practice to

require two consecutive abnormally high measurements made at least 4 to 6 hours apart.

Urine Analysis (Dipstick Testing)

Uristrix – Bayer India diagnostic reagent strips were used. The impregnated end of the strip was dipped into the freshly collected, well mixed urine. The results were read within 60 sec. The change in strip color were matched with the standard color blocks & the results were documented as negative, trace, 1+, 2+, 3+, 4+ proteinuria according to the change in strip colors.

Haematocrit Estimation

With all aseptic precautions, 2 ml of blood is withdrawn by venepuncture with no regard, to fasting state. The wintrobe's tube filled upto the 100 mark on top with a pasteur pipette, ensuring that there are no air bubbles in the blood column. Centrifuge the tube for 15 min at 3500 rpm until packing is complete. After centrifuging, the blood is separated into three layers, the bottom column constitute the red cells. The percentage of the height of the column of blood occupied by packed Red cells constitute the haematocrit.

Pepripheral smear (hemolytic evidence and platelet estimation)

Blood samples were collected from fingertips by pricking with a sterile needle after placing a drop of 14% magnesium sulphate solution on the fingertips, which prevented clumping, and disintergration of platelets. Blood smears were drawn and stained with Leishman stain as done for differential count of white blood cells. Platelet estimation was done by accepted manual method. This consists of counting platelets in 10 oil immersion fields in an ideal stained smear, (ie. A smear with proper stains and free from dust particles, should not have clumping of Cells). When the smear was not an ideal it was discarded and another smear prepared. The total number of platelets in Lacs/mm³ is calculated as average number of platelets / oil immersion field x 20,000. According of platelet estimation the subjects were categorized and severity assessed. Hemolysis were recorded by presence of abnormal peripheral smear with schistocytes, Burr cells, fragmented RBCs and reticulocytosis (Mohapatra et al., 2007; Ramnik Soud et al., 1999; Raymond et al., 1969; Karen et al., 2002).

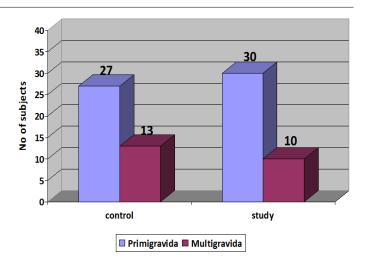
Liver Enzyme Estimation

With all aseptic precautions, 2 ml of blood was collected by vene puncture with no regard to fasting state. The blood was allowed to clot, and retract, the separated serum was stored at 2-8°c. The enzyme levels (SGOT,SGPT,LDH) is reported to be stable in serum for 3 days at 2-8°C. The serum should be free from haemolysis. The haemolysed serum was discarded and repeat samples obtained. The enzyme assay done in the serum without any hemolysis (Michael et al., 2001; Raymond *et al.*, 1962).

Dr. P. Kumudha et al. Assessment of severity of pregnancy induced hypertension by estimation of platelets, liver enzymes and early detection of hellp syndrome

The method and KIT used were,

	Method	Kit
1. SGOT Estimation	Modified IFCC method	SGOT (ASAT) Kit
2. SGPT Estimation	Modified IFCC Method	SGPT (ALAT) Kit
3. LDH Estimation	Modified IFCC Method	LDH (P-L) Kit
T (


Instrument was used: Semi Auto analyser.

Normal Reference values – SGOT – Upto 31 U/L at 37°C SGPT – Upto 34 U/L at 37°C LDH –Upto230–460U/L at 37°C

RESULTS

Statistical Analysis

Statistical analysis was done by using the Statistical Package for Social Sciences (SPSS) X version. The results were analyzed by the Chi - Square test and ANOVA study. Data's were expressed as mean with standard deviation. The control normotensive group were compared with mild and severe pregnancy induced hypertension group. The statistical significance was considered at P < 0.05. The present study was conducted in the Department of Physiology, Thanjavur. 80 subjects [40 normotensive pregnant women and 40 pregnancy induced hypertensive women] were recruited for the study.

Among the study and control groups, the primi gravida constitutes the major proportion

Table 1. Demographic and Clinical parameters of Study and Control groups

	Group	Age	Ga	Systolic bp	Diastolic bp	Platelet count	Sgot	Sgpt	Ldh	Hct
Control	Mean	24.95	34.45	116.70	75.80	2.3668	27.58	18.12	322.20	35.6500
	Ν	40	40	40	40	40	40	40	40	40
	Std. Deviation	3.55	3.37	6.19	5.04	0.3895	9.28	7.03	84.46	1.8612
Study	Mean	24.78	35.45	150.90	99.70	1.8622	48.42	38.26	627.00	35.3250
-	Ν	40	40	40	40	40	40	40	40	40
	Std. Deviation	3.59	3.71	13.78	9.98	0.5215	69.07	49.84	261.47	5.5395
Total	Mean	24.86	34.95	133.80	87.75	2.1145	38.00	28.19	474.60	34.9875
	Ν	80	80	80	80	80	80	80	80	80
	Std. Deviation	3.55	3.56	20.22	14.36	0.5230	50.08	36.79	246.56	4.1598

The mean age of control group was 24.95 ± 3.55 yrs.

The mean age of study group was 24.78 ± 3.59 yrs.

The mean GA in the control group was 34.45 ± 3.37 wks.

The mean GA in the study group was 35.45 ± 3.71 wks.

Table 2. Parity distribution	1 among control	and study group
------------------------------	-----------------	-----------------

		GRAVIDA		
		MULTI	PRIMI	Total
	NORMOTENSIVE	13	27	40
		32.5%	67.5%	100.0%
	MILD PIH	6	23	29
		20.7%	79.3%	100.0%
	SEVERE PIH	4	7	11
		36.4%	63.6%	100.0%
Total		23	57	80
		28.8%	71.3%	100.0%

		SYSTOLIC BP	DIASTOLIC BP
NORMAL	Mean	116.70	/5.80
	Ν	40	40
	Std. Deviation	6.19	5.04
MILD PIH	Mean	144.21	94.41
	Ν	29	29
	Std. Deviation	6.24	4.35
SEVERE PIH	Mean	168.55	113.64
	Ν	11	11
	Std. Deviation	12.62	6.38
Total	Mean	133.80	87.75
	Ν	80	80
	Std. Deviation	20.22	14.36

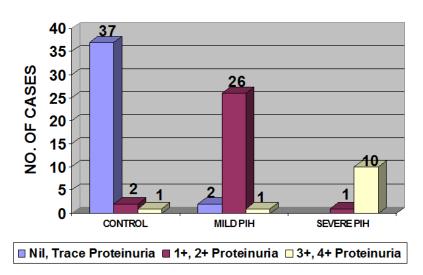
Table 3. Systolic & diastolic blood pressure in normotensive, mild pih and severe PIH

Table 4. Analysis of systolic	& diastolic bp between normotens	sive, mild & sever PIH by anova study

		Sumof				Sig.
		Squares	df	Mean Square	F	
SYSTOLIC BP	Between Groups (Combined)	28116.914	2	14058.457	259.227	< .0005
	Within Groups	4175.886	77	54.232		
	Total	32292.800	79			
DIASTOLIC BP	Between Groups (Combined)	14371.020	2	7185.510	286.976	<.0005
	Within Groups	1927.980	77	25.039		
	Total	16299.000	79			

In normotensive control, the mean systolic & diastolic BP was 116.70 ± 6.19 , 75.80 ± 5.04 mmHg respectively.

In mild PIH, the mean systolic & diastolic BP was 144.21 ± 6.24 , 94.41 ± 4.35 mmHg respectively.


In severe PIH, the mean systolic & diastolic BP was 168.55 ± 12.62 , 113.64 ± 6.38 mmHg respectively.

The mean difference in Blood Pressure between these 3 groups was significant (P value < 0.0005).

Table 5. Presence of proteinuria in mild PIH & severe PIH

URINE ANALYSIS (Evidence of Proteinuria)	Control	Mild PIH	Severe PIH	Total
Nil, Trace	37	2	-	39
1+, 2+	2	26	1	29
3+, 4+	1	1	10	12
Total	40	29	11	80

Chi Square P < 0.001

In this study 1+ proteinuria were more in the mild PIH. 3+, 4+ proteinuria were present in severe PIH when compared with normotensive control patients. The study results were significant (P < 0.001).

		PLATELET				
		COUNT	SGOT	SGPT	LDH	HCT
NORMAL	Mean	2.3668	27.58	18.12	322.20	35.6500
	N	40	40	40	40	40
	Std. Deviation	.3895	9.28	7.03	84.46	1.8612
MILD PIH	Mean	2.0414	32.42	23.61	560.72	36.2759
	Ν	29	29	29	29	29
	Std. Deviation	.3650	17.64	14.61	224.50	4.5111
SEVERE PIH	Mean	1.3900	90.60	76.85	801.73	29.1818
	Ν	11	11	11	11	11
	Std. Deviation	.5909	122.62	82.64	281.38	4.7501
Total	Mean	2.1145	38.00	28.19	474.60	34.9875
	Ν	80	80	80	80	80
	Std. Deviation	.5230	50.08	36.79	246.56	4.1598

Table 6. Laboratory results of normotensive control, mild & severe PIH

Table 7. Analysis of laboratory results by anova study between normotensive control, mild PIH & severe PIH

		Sum of Squares	df	Mean Square	F	Sig.
PLATELET COUNT	Between Groups	8.474	2	4.237	24.832	< .0005
	Within Groups	13.138	77	.171		
	Total	21.613	79			
SGOT	Between Groups	35683.483	2	17841.742	8.458	< .0005
	Within Groups	162429.9	77	2109.479		
	Total	198113.3	79			
SGPT	Between Groups	30714.946	2	15357.473	15.519	< .0005
	Within Groups	76198.912	77	989.596		
	Total	106913.9	79			
LDH	Between Groups	2321269	2	1160634.413	36.018	< .0005
	Within Groups	2481230	77	32223.771		
	Total	4802499	79			
Het	Between Groups	436.458	2	218.229	18.058	< .0005
	Within Groups	930.529	77	12.085		
	Total	1366.987	79			

In normotensive control, mean platelet count was 2.3668 ± 0.3895 lakhs / mm3.

In mild PIH, mean platelet count was 2.0414 ± 0.3650 lakhs / mm3.

In severe PIH, mean platelet count was 1.3900 ± 0.5909 lakhs / mm3.

The test results show significant reduction in platelet count in the mild and severe PIH (P < 0.0005).

The mean difference in the SGOT, SGPT, LDH value in the normotensive control, mild & severe PIH were significant (P < 0.0005).

The mean SGOT, SGPT, LDH in normotensive were 27.58 ± 9.28 , 18.12 ± 7.03 , 322.20 ± 84.46 U/L respectively.

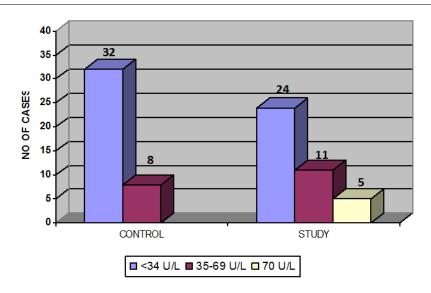
The mean SGOT, SGPT, LDH in mild PIH were 32.42 ± 17.64 , 23.61 ± 14.61 , 560.72 ± 224.50 U/L respectively.

The mean SGOT, SGPT, LDH in severe PIH were, 90.60 ± 122.62 , 76.85 ± 82.64 , 801.73 ± 281.38 U/L respectively.

These liver enzymes were markedly elevated in severe PIH.

In the Haematocrit estimation the mean difference between these groups were significant (P < 0.0005). Hct% were raised in mild PIH, reduced in severe PIH, with normal results in control group.

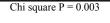
The mean Hct% in normotensive, $35.65 \pm 1.86\%$

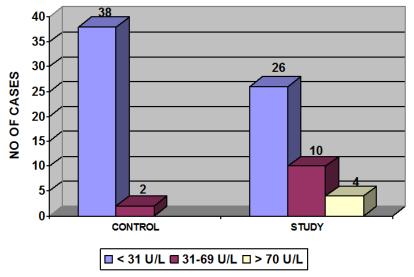

In mild PIH, 36.27 ± 4.5%

In severe PIH, $29.18 \pm 4.75\%$

Table 8. The sgot values in normotensive control, mild PIH & severe PIH

GROUP			NORMAL	MILD PIH	SEVERE PIH	Total
CONTROL	SGOT	< 34 U/L	32			32
			100.0%			100.0%
		35 to 69 U/L	8			8
			100.0%			100.0%
	Total		40			40
			100.0%			100.0%
STUDY	SGOT	< 34 U/L		21	3	24
				87.5%	12.5%	100.0%
		35 to 69 U/L		7	4	11
				63.6%	36.4%	100.0%
		>70 U/L		1	4	5
				25.0%	75.0%	100.0%
	Total			29	11	40
				74.4%	25.6%	100.0%

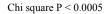

Chi square P = 0.019

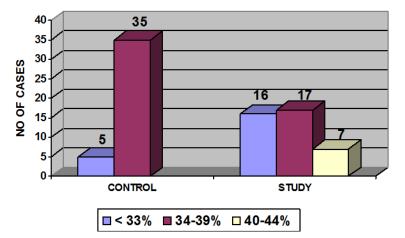


By chi square study, the test results of SGOT was significant (P = 0.019), marked elevation (> 70 U/L) was more among severe PIH.

GROUP		NORMAL	MILD PIH	SEVERE PIH	Total
CONTROL SGPT U	/ L-31	38			38
		100.0%			100.0%
	32-69	2			2
		100.0%			100.0%
Total		40			40
		100.0%			100.0%
STUDY SGPT U/	L <mark>0-31</mark>		24	2	26
			92.3%	7.7%	100.0%
	32-69		4	6	10
			40.0%	60.0%	100.0%
	> 70		1	3	4
			50.0%	50.0%	100.0%
Total			29	11	40
	Chi squara		76.3%	23.7%	100.0%

Table 9. Study results of SGPT in normotensive control, mild & severe PIH





The results of SGPT among normotensive, mild & severe PIH were significant (P = 0.003), marked elevation of SGPT was present in severe PIH when compared with normotensive control & mild PIH

GROUP			NORMAL	MILD PIH	SEVERE PIH	Total
CONTROL	НСТ	<33 %	5			5
			100.0%			100.0%
		34-39 %	35			35
			100.0%			100.0%
	Total		40			40
			100.0%			100.0%
STUDY	нст	< 33 %		6	10	16
				37.5%	62.5%	100.0%
		34-39 %		16	1	17
				94.1%	5.9%	100.0%
		40 - 44 %		7		7
				100.0%		100.0%
	Total			29	11	40
				72.5%	27.5%	100.0%

Table 10. Haemotocrit in normotensive compared with mild PIH & severe PIH

The mean differences in Hct% in all these 3 groups (normotensive, mild & severe PIH) were significant (P < 0.0005). Hct% was elevated in mild PIH & reduced in severe PIH.

Table 11. Peripheral smear report	[evidence of hemolysis] between normotensive control & PIH
-----------------------------------	--

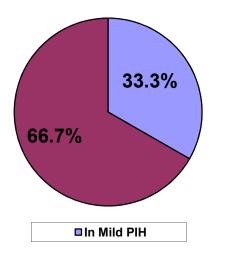
		GRC	UP	
	HEMOLYSIS	CONTROL	STUDY	Total
	Not Present	40	34	74
		54.1%	45.9%	100.0%
	Present		6	6
			100.0%	100.0%
Total		40	40	80
		50.0%	50.0%	100.0%

Chi square P=0.011

The peripheral smear study for hemolysis was significantly present in PIH when compared with normotensives (P = 0.011).

Table12. Platelet count in normotensives, mild & severe PIH

	Platelet Count (Cells/mm3)	Control	Mild PIH	Severe PIH	Total
Normal Count	> 1,50,000	40	27	3	70
Thrombocytopenia	Class1 (more severe) $< 50,000$	-	-	1	1
	Class 2 (moderate severe) 50,000 - 1,00,000	-	-	2	2
	Class 3(less severe) 1,00,000 – 1,50,000	-	2	5	7
Total			40	4	80


Chi square P = 0.013

The platelet estimation between control, mild PIH & severe PIH were statistically significant (P value = 0.013). All degrees of thrombocytopenia were present in severe PIH & mild thrombocytopenia was present in mild PIH. Out of 10 cases of thrombocytopenia 6 cases were present with features of HELLP syndrome.

		NORMAL	MILD PIH	SEVERE PIH	Total
HELPP	NO	40	27	7	74
SYND		54.1%	36.5%	9.5%	100.0%
	YES		2	4	6
			33.3%	66.7%	100.0%
Total		40	29	11	80
		50.0%	36.3%	13.8%	100.0%

Table 13. Incidence of hellp syndrome in normotensives, mild PIH & severe PIH

Chi square P < 0.0001

Incidence of HELLP Syndrome

The incidence of HELLP syndrome was more among severe PIH group. The occurrence rate was significant (P < 0.0001)

HELPP SYND		SYSTOLIC	DIASTOLIC
NO	Mean	130.95	86.08
	Ν	74	74
	Std. Deviation	17.42	13.38
YES	Mean	169.00	108.33
	Ν	6	6
	Std. Deviation	20.54	9.83
Total	Mean	133.80	87.75
	Ν	80	80
	Std. Deviation	20.22	14.36

Table 14. Mean systolic & diastolic bp in those with hellp syndorme & without hellp syndrome

The mean systolic & diasotlic BP in HELLP syndrome was 169 \pm 20.54, 108.73 \pm 9.83 mmHg respectively.

			Sum of Squares	df	Mean Square	F	Sig.
SYSTOLIC *	Between Groups (0	Combined)	8037.016	1	8037.016	25.845	<0.0005
HELPP SYND	Within Groups		24255.784	78	310.972		
	Total		32292.800	79			
DIASTOLIC *	Between Groups (Combined)	2748.153	1	2748.153	15.819	<0.0005
HELPP SYND	Within Groups		13550.847	78	173.729		
	Total		16299.000	79			

The mean difference in the systolic & diastolic BP were statistically significant between HELLP syndorme and without HELLP syndrome groups (P < 0.0005)

	c laboratory results v	vien nenp synuroi		it nenp synur		113170, 1111)
		PLATELET				
HELPP SYND	0	COUNT	SGOT	SGPT	LDH	HCT
NO	Mean	2.2023	29.97	22.93	432.64	35.7432
	N	74	74	74	74	74
	Std. Deviation	.4271	12.56	21.44	193.24	3.0880
YES	Mean	1.0317	136.98	92.97	992.17	25.6667
	Ν	6	6	6	6	6
	Std. Deviation	.3711	156.87	96.06	260.34	4.6332
Total	Mean	2.1145	38.00	28.19	474.60	34.9875
	Ν	80	80	80	80	80
	Std. Deviation	.5230	50.08	36.79	246.56	4,1598

Table 16. The laboratory results with hellp syndrome and without hellp syndrome (normotensive, PIH)

The mean platelet count was markedly reduced in HELLP syndrome. The mean values of SGOT, SGPT, LDH were markedly elevated in HELLP syndrome & Hct% was reduced when compared with normotensive and PIH.

Table 17. Analysis of laboratory results between hellp syndrome, PIH and normotensives by anova study

		Sum of Squares	df	Mean Square	F	Sig.
PLATELET	COUNT Between Groups	7.606	1	7.6060	42.353	< 0.0005
	Within Groups	14.007	78	0.180		
	Total	21.613	79			
SGOT	Between Groups	63555.219	1	63555.219	36.841	< 0.0005
	Within Groups	134558.1	78	1725.104		
	Total	198113.3	79			
SGPT	Between Groups	27219.821	1	27219.821	26.641	< 0.0005
	Within Groups	79694.037	78	1021.718		
	Total	106913.9	79			
LDH	Between Groups	1737569	1	1737569.218	44.220	< 0.0005
	Within Groups	3064930	78	39293.974		
	Total	4802499	79			
Hct	Between Groups	563.533	1	563.533	54.708	< 0.0005
	Within Groups	803.455	78	10.301		
	Total	1366.987	79			

The mean difference of laboratory values (Platelet count, SGOT, SGPT, LDH, Hct%) between normotensives, PIH and HELLP syndrome were significant (P < 0.0005).

DISCUSSION

The present study was done on 40 pregnancy induced hypertensive women and 40 healthy normotensive pregnant women. The present study has shown that the assessment of severity of PIH and early detection of HELLP syndrome was significantly influenced by platelet estimation, peripheral smear study (evidence of hemolysis), haemotocrit estimation and urine analysis for proteinuria. Both groups had similar demographic characteristics. In the study, the mean maternal age was 24.78 ± 3.59 years in the range of 19 to 35 years. The mean GA was 35.45 ± 3.71 wks, in the range of 28 wks to 40 wks, most of the study groups were fall between 32 to 40 wks of gestation. (i.e., late 3rd trimester)

Prakash *et al.* (2006) showed the mean maternal age were 24.75 \pm 3.36 years in the range of 19 to 32 years. The vast majority (84%) of patients were found to be hypertensive in the III trimester (Prakash *et al.*, 2006). The present study congruent with this literature cited. In the present study the majority of patients were primigravida 30 (75%) and 10 (25%) were multigravida. In many studies the frequency was more among primigravida. Ahmed. F A et al showed the occurrence of PIH were more among primigravida (71.7%) than in multigravida (28.3%) Ahmed *et al* (2007). The present study has parity distribution were as that of literature quoted.

Shyam Sunder Sud *et al.* (2006) explained the minimum criteria for PIH was BP \geq 140/90mmHg and increased certainty of preeclampsia was BP \geq 160 / 110 mmHg (Shyam Sunder Sud *et al.*, 2006). In the present study, the mean systolic and diastolic BP was in mild PIH about 144.21 ± 6.24 mmHg, 94.41 ± 4.35 mmHg respectively and in severe PIH, the mean systolic and diastolic BP was 168.55 ± 12.62 mmHg, 113.6 ± 6.38 mmHg respectively. This study values were coincide with the reference cited.

Gary Cunningham et al. (2005) showed that proteinuria is a sign of worsening hypertensive disease. It increases perinatal morbidity and mortality. Proteinuria 1+ dipstick or more in random urine samples greatly bolters the diagnosis (Gary Cunningham et al. 2005). In the present study 65% of cases were present with 1+ proteinuria, 35% cases were present with 3+, 4+ proteinuria. The study results coincides with the reference cited. A significant decrease in platelet numbers were observed as the mean blood pressure increases in the study group. The degree of thrombocytopenia increases with severity of disease. In the present study the mean platelet count were found to be $2.3668 \pm .3895$ lakhs/mm³ in the normotensive control group, 2.0414 ± 0.3650 lakhs/mm³ in the mild PIH and 1.3900 ± 0.5909 lakhs/mm³ group in severe PIH group. This indicates that thrombocytopenia is directly proportional to the severity of PIH.

Mohapatra *et al.* (2007) compared the values of platelet estimation between study and control groups. They showed that the platelet estimation in the control group was 2.38 lakhs/mm³. In mid PIH the estimation was around 2.23 ± 0.19 lakhs/mm³, and in severe PIH it was 1.83 ± 0.45 lakhs/mm³. They observed a significant decrease in platelet numbers as the mean blood pressure increases in the study group (Mohapatra *et al.*, 2007). So the present study congruent with what is said in this literature.

Theodore E Warkentin explained an isolated maternal thrombocytopenia without microangipathic hemolysis or liver dysfunction regardless of the degree of hypertension indicates a worst prognosis and need prompt treatment (Theodore *et al.*, 2^{nd} edition). Courtney Reynolds observed an incidence of 15 to 20% thrombocytopenia in the PIH group (Courtney Reynolds *et al.*, 9^{th} edition). In the present study, thrombocytopenia (< 1,50,000/mm³) found to be in 25% of the PIH group. The study result coincides with the reference cited.

Prakash *et al.* (2006) states that when liver dysfunction occurs, mild elevation of transaminases in common. He observed majority of PIH had mild rise, (76.39%) and small numbers of patients (555%) had marked rise in SGOT level. The SGPT level mildly elevated in most of the patients (59.72%) and a marked rise in 8.33% of cases. LDH levels was markedly elevated in 9.72% of patients of which 5 patients had HELLP syndrome (Prakash *et al.*, 2006).

Wayne R Cohen showed liver dysfunction defined by elevated SGOT was identified in 21% of PIH (Wayne *et al.*, 2000). In the present study majority (27.5%) had mild rise in SGOT (35 to 70 U/L) and a small number (12.5%) of cases had marked rise in SGOT (> 70 U/L). Related to SGPT, most patients (25%) had a mild rise (31 to 70 U/L) & 10% of patients had a marked rise (>70 U/L). LDH levels were mildly elevated (460 – 600 U/L) in 35% of patients and a marked rise (> 600 U/L) in 42.25% of cases of which 6 had HELLP syndrome. The finding of this present study correlated with the reference quoted.

Rebecco W. Van Dyke showed liver involvement was more common upto 70% in severe preeclampsic, accounting for 20% MMR in preeclampsia (Rebecca *et al.*, 2006).

In the present study the elevation of SGOT observed in 72.5% of severe PIH cases. Again thin finding also coincide with the reference cited.

Courtney Reynolds observed microangipathic hemolytic anemia without other signs of disseminated intravascular coagulation in 5% of PIH (Courtney Reynolds *et al.*, 9th editon). In the present study 15% of PIH cases showed features of hemolysis. This study congrue with the literature finding. Dorothee Perloff showed that in normal pregnancy the Hct% was reduced. In PIH it may be normal or elevated, reflecting hemoconcentration due to reduced plasma volume or further reduced owing to hemolysis (Kalyan barmade *et al.*, 2003). Kalyan Barmade showed in mild PIH, there is an elevation of Hct% (Kalyan barmade *et al.*, 2003).

Nick-Anim-Nyame et al observed mean Hct% were higher in the preeclampsia group (control = $31\pm$.02, precclamspia = 0.33 ± 0.03) (Nick Anim *et al.*, 2001).

In the present study the mean Hct% in the control was 35.6500 ± 1.8612 . In the mild PIH, it was 36.2759 ± 4.5111 . In severe PIH, it was 29.1818 ± 4.7501 . So, this study results also tally with the literatures cited.

HELLP syndrome in generally thought to be a progression or complication of PIH.

Rodger L Bick showed an incidence of HELLP syndrome in 15 to 26% of PIH (Proger *et al.*, 2002).

Shyam Sundar Sud showed an incidence of 10-20% of HELLP syndrome in PIH (Shyam Sunder Sud *et al.*, 2006).

In the present study, the HELLP syndrome was observed in 15% of PIH.

Rebecca W. Van Dyke showed the relationship between HELLP syndrome and preeclampsia was variable, as hypertension was mild in 25% of patients with HELLP syndrome (Rebecca *et al.*, 2006).

In the present study the 33.3% of mild PIH showed HELLP syndrome. This result also coincides with the literature cited.

Conclusion

Pregnancy is one of the wonderful and noble services imposed by nature. More than 16-17% of pregnant women face various problems related to pregnancy and child birth. The preeclampsia and HELLP syndrome are still the leading causes of maternal, perinatal mortality & morbidity. The progression of PIH from mild to life threatening diseases cannot be predicted. The aim of this study to draw attention to the life threatening complication such as hepatic dysfunction, haematological abnormalities and HELLP syndrome that may occur in cases of preeclampsia. The early diagnosis and early assessment of severity by platelet estimation, peripheral smear study, liver enzyme assays & urine analysis for proteinuria would be the most effective approach to enhance both maternal and fetal well being, as well as the successful outcome of pregnancy.

REFERANCES

- Ahmed, F.A. and Amina, Naeem, N.K. 2007. HELLP syndrome a clinical variant of preeclampsia, Annals vol 13, No 2 Apr-June 2007; P. 158-161.
- Alexander, P., Spence, Ph.D., Elliott, B. and Manson, Ph.D. 1983. Pregnancy, embryonic development and inheritance. Human Anatomy and physiology, 2nd edition, The Benjamin / Cummings publishing company, 1983; P.761-763
- Alokendu Chatterjee and Gita basu. 2004. Hypertensive disorders in pregnancy. Essentials of obstetrics 4th Edi, New Delhi, Jaypee Brothers (P) Ltd, 2004; P.180-198.

- Andrew Shennan. 2007. Hypertensive disorders. Dewhurst's textbook of obstetrics and gynaecology, 7th edition Blackwell publishing, 2007; P. 227-234.
- Arthur, C. and Guyton. 1992. Pregnancy, Lactation, Fetal and neonatal physiology. Human physiology and mechanism of disease, 5th edition 1992; W.B.Saunders Company, Philadelphia, P.629.
- Atul, B., Mehta and victor Hoffbrand A. Haematological aspects of systemic disease. Postgraduate haematology, 5th edition, Blackwell publishing, P.965-978.
- Sibai, B.M. and Khoury, A.D. 2000. Gestational Hypertension / Preeclampsia. Clinical Maternal – Fetal medicine, the Parthenon publishing group, New York, 2000; P.19-27.
- Baha, M., Sibai, and Preeclampsia, Eclampsia. 1994. Management of high risk pregnancy, 3rd edition, Blackwell *Science*, P.377-385.
- Bhola Nath Banerji. Toxemia of pregnancy. Fundamental obstetrics, Prentice hall of India private limited, New Delhi, 1982; P.309-344.
- Campbell, D.M. *et al.* 1985. Preeclampsia in second pregnancy. British journal of obstetrics and gynaecolgy, Vol 92, No1, January 1985; P. 131-140.
- Charles J. Lockwood and Michel J. Paidas. 1997. Preeclampasia and hypertensive disorders. Critical care obstetrics, 3rd Edi, *Blackwell Science*, 1997; P.207-230.
- Chee Jing Jye. 2009. Challenges of the obstetrician in the management of severe preeclampsia. Obs and Gynae today, August 2009; Vol XIV No.8, P.348 351.
- Christine M. Henshaw. 2000. Alterations in Blood pressure. Pathophysiology Biological and behavioral perspectives, 2nd edition, W.D. Saunders Company, P. 374-384.
- Christopher W.G. Redman. 1995. Hypertension in pregnancy. Turnbulls obstetrics, 2nd edition, P.441-470.
- Christopher W.G. Redman. Hypertension. Medical disorders in obstetric practice, 4th Edi, Blackwell science, P.159-196.
- Courtney Reynolds, William C. Mabie, Baha M. Sibai. Hypertensive states of pregnancy. Current obstetric and gynaecologic diagnosis and treatment, 9th edition, Mc Graw Hill, P.338-353.
- Cyril A Keele, Teric Neil, Norman Joels. 2007. Liver function Tests, Samson Wright's applied physiology, 13th edition, oxford university press, P.443-444.
- David A. Miller. Hypertension in pregnancy. Management of common problems in obstetrics and gynaecology, 4th Edi, Blackwell publishing, P.112-118.
- Dorothe Perloff. 1988. Hypertension and pregnancy related hypertension. Cardiology clinics, WB Saunders company Feb 1998; Vol 16, No.1, P.78-101.
- Edouard L, 1980. EVA Alberman. National trends in the certified causes of perinatal mortality, 1968 to 1978, BJOG vol 87, No 10, Oct 1980; P.833-838.
- Fathima Paruk, Jack Moodley. 2000. Treatment of severe preeclampsia syndrome. Progress in obstetrics and gynaecology, Vol 14, 2000; P. 102-107.
- Florence Bretelle *et al.* 2001. Maternal endothelial soluble cell adhesion molecules with isolated small for gestational age fetuses: comparison with preeclampsia. BJOG, Nov 2001; Vol 108, P.1277-1282.
- Gary A Thibodeau, Kevin. T. Patton. 2007. Growth and development. Anthony's textbook of Anatomy and Physiology, 18th edition, Mosby, 2007; P.1191 1192.

- Gary Cunningham *et al.* hypertensive disorders in pregnancy. Williams Obstertrics, 22nd Ed, MC Graw Hill, 2005; P.761-790.
- Gary. A. Dildy, David B. Cottun. Management of preeclampsia, and eclampsia. Am J.O.G 1976; 124:855-864.
- Gerald J. Tartora, Sandra Reynolds Grabowski. Principles of Anatomy and Physiology, 10th Edition, John wiley & son inc. P. 1088-1090.
- Hall D.R, Odendaal H.J, Kirsten G.F, Smith. J, Grove D. Expectant management of early onset severe preeclampsia, perinatal outcome, BJOG, Oct 2000; Vol.107, P. 1258-1264.
- Hall D.R. Undendaal H.J Steyn D.W, Grove D. Expectant management of early onset severe preeclampsia: Maternal outcome, BJOG, Oct 2000; Vol 107, P. 1252-1257.
- Harbans Lal, Nirmal Gulati, Saroj, Nidhi Sandooja and kiran Chugh. Plasma and erythrocyte magnesium levels in patients with preeclamspia / eclampsia. Indian journal of clinical biochemistry, 1995; 10 (2), 103-105.
- Hye yeon Kim *et al.* Neonatal outcome after preterm delivery in HELLP syndrome, Yonsei medical journal, Vol 47, No.3, 2006; P. 393-398.
- Jacques Wallach. Interpretation of diagnostic tests, 8th edition, Wolters klower / Lippincott Williams & Wilkins 2007; P.7-83.
- James H. Jandl. Secondary defects of cell membrane. Blood textbook of haematology, 2nd edition, Little brown and company, 2003; P. 404-407.
- James. M. Roberts. Pregnancy related hypertension. Maternal fetal medicine principles and practice, 5th Edi, Saunders, 2004; P. 859-899.
- Jose L. Baratha *et al.* The relationship between leptin and inflammatory cytokines in women with preeclampsia. British journal of obstetrics and gynaecology, December 2001; Vol. 108, P. 1272-1276.
- Kalyan barmade. Hypertension in pregnancy. Medical and surgical disorders in pregnancy, 1st edition, Jaypee brothers, New Delhi 2003; P.241-258.
- Karen S. Clark and Teresa G. Hippel. Routine testing in haematology. Haematology clinical principles and applications, 2nd edition, 2002; P.154-183.
- Krishna Menon, Devi P.K, Bhaskar Rao K. Hypertensive Disorders of pregnancy. Post graduate obstetrics and gynaecology 4th Edi, Orient Longman, 1994; P.43-59.
- Lars J. Vatten, Rolv Skjaerven. Is preeclamspsia more than one disease? BJOG, April 2004; Vol III, P. 298-302. Laura A magee et al. ³¹p magnetic resonance spectroscopy of
- Laura A magee et al. ³¹p magnetic resonance spectroscopy of the liver in HELLP syndrome. British journal of obstetrics and gynaecology, June 1999; Vol 106, P. 582-588.
- Lindsey Stevens, Anthony Kenney. Systemic complication of pregnancy. Emergencies in obstetrics and gynaecology, Oxford university press, 1994; P.164-169.
- Long P.A, Abell D.A. Fetal growth retardation and preeclampsia. BJOG, Jan 1980; Vol 87, P.13-18.
- M.Ounsted. Risk factors associated with small for dates and large for dates infants, BJOG, March 1985; Vol 92, P. 226-232.

- Maarten T.M. Raijmakers *et al.* Thiol status and antioxidant capacity in women with a history of severe preeclampsia, BJOG, March 2004; Vol III, P. 207-212.
- Michael A Belfort *et al.* Pregnant women with chronic hypertension and superimposed preeclampsia have high cerebral perfusion pressure, BJOG, Nov 2001; Vol 108, P. 141-147.
- Michael R Jeng and Bertil Glader. Acquired nonimmune hemolytic disorders. Wintrobe's clinical haematology, 11th edition, Vol 1, Lippincott Williams and wilkins, 2004; P. 1236-1237.
- Mohapatra S, Pradhan B.B, Satpathy UK. Arati Mohan and Pattnaik J.R. Platelet Estimation: Its prognostic value in pregnancy induced hypertension. *Indian J physiol Pharmacol*, 2007: 51 (2): 160-164.
- Nawal Kishore, Sushma Rastogi. Transaminase activity in toxemia of pregnancy. *The Journal of Obstetrics and Gynaecology of India*, Vol 19, April 1969; P. 150-155.
- Nick Anim Nyame *et al.* Bio-chemical markers of maternal bone turnover are elevated in preeclampsia, British journal of obstetrics and gynaecology, March 2001; Vol 108, P. 258-262.
- Park. K. Preventive medicine in obstetrics, paediatrics. Textbook of preventive and social medicine, 20th Edition M/s Banarsidas, Bhanot, 2009; P.459 - 486.
- Per magnus, Anne Eskild. Seasonal variation in the occurrence of preeclampsia. *British Journal of obstetrics and gynaecology*, November 2001; Vol 108, P. 116-119.
- Phyllis August. Hypertensive Disorders in pregnancy. Medical complications during pregnancy 5th Edition, WB Saunders Company, 2005; P.53-77.
- Prakash J, Pandey LK, Singh AK, Kar B. Hypertension in pregnancy hospital based study, JAPI, Vol 54, April 2006; P. 273-278
- Pratap kumar narayan, Vipul khetarpual, Ankur Agarwal, Panchajanya Paul. Is there any rule of expectant management in severe preeclampsia? Obs and Gynae today, march 2008; Vol XIII, No 3, P. 105-109.
- Proger L. Bick. Disseminated intravascular coagulation, Disorders of thrombosis and hemostasis. Clinical and laboratory practice, 3rd edition, Lippincott Williams and wilkins 2002; P. 143-145.
- Puja Dewan. Management of hypertension An overview, obs and gynae today, September 2005; Vol X, No.9, P. 506-511.
- Pushpa Roy, Anmola Sinha. A study of glomerular filtration rate in relation to severity of toxemia of pregnancy. *The Journal of Obstetrics and Gynecology of India*, vol XXXIV, No2, April 1984; P. 272-277.
- Rahman T.M. Wendon. J. Severe hepatic dysfunction in pregnancy. Q J Med 2002; 95: 343-357.
- Ramnik Soud. Medical Laboratory technology methods and interpretation, 15th edition, Jaypee brothers (P) Ltd, 1999; P. 175-1147.
- Raymond H. Goodale, Frances K. Widmann. Heamatology procedures. clinical interpretation of laboratory tests, 6th edition, *Philadelphia*, 1969; P. 8-326.
- Rebecca W. Van Dyke. The liver in pregnancy. Zakim and Boyer's hepatology, A Textbook of liver disease, 5th Edition, Saunders 2006; Vol 2, P 1003-1029.

- Robert H. Knopp, Scoot Magee.M. Pregnancy and parturition. Textbook of physiology, 21st edition, 1989; W.B. Saunders company, P.1380 – 1385.
- Robert Percival. Abnormal Pregnancy. Manual of Obstetrics, 14th Edi, Churchill Livingstone, New York, 2004; P.205-225.
- Robyn A. North, Rennae S. Taylor, Jean Claude Schellenberg. Evaluation of a definition of preeclampsia. *British Journal of Obstetrics and Gynaecology*, August 1999; Vol.106, P. 767-773.
- Sara H Garmel. Thrombocytopenia in pregnancy. Medical complications in pregnancy. Practical pathways in obstetrics and gynaecology Mc. Graw-Hill medical publishing division, 2005; P. 155-163.
- Selahattin kumru et al. Comparison of maternal and perinatal outcomes of HELLP syndrome and severe preeclampsia cases. Perinatal journal, vol 13, issue 1/ March 2005; P 9-14.
- Sharma et al. Assessment of changes in coagulation in parturients with preeclampsia using thromboelastography. Anaesthesiology: Feb 1999; Vol 90, issue 2, P. 385-390.
- Sharma JB. Management of pregnancy induced hypertension: An overview of preeclampsia and eclampsia, obs & Gynae today, vol X, No 10, Oct 2005; P. 570-581.
- Sheila Sherlock, James Dooley. The liver in pregnancy, diseases of liver and biliary system, 11th edition, Blackwell science, 2002; P. 471-475.
- Shrish N Daftray, Sudip Chakravarthi. Medical disorders in pregnancy. Manual of obstetrics, Elsevier, P. 78-88.
- Shyam Sunder Sud, Anju Huria. Poonem goel, pradeep kumar saha. Hypertensive disorders in pregnancy, obs & gynae today, April 2006; Vol XI, No 4, P. 201-216.
- Silverstone A, Trudinger B.J, Lewis P.J, Bulpitt C.J. Maternal hypertension and intrauterine fetal death in mid pregnancy, BJOG, Vol 87, No 6, June 1980; P. 457-461.
- Skjaerven R. Wilcox AJ, Lie RT. The interval between pregnancies and risk of preeclampsia. New England journal of medicine, Jan 3, 2002; Vol 346. Number 1, 346(1): 33-38.
- Stephen G. Carroll Kypros, Nicolaides. H. Maternal and fetal thrombocytopenia. Progress in obstetrics and gynaecology, Vol. 13, 1998; P.177-189.
- Studd J.W.W, Blainey J.D. Serum protein changes in the preeclmapsia – eclampsia syndrome. The journal of obstetrics and gynaecology of the British commonwealth, Sep 1970; Vol 77, P. 796-801.
- Theodore E Warkentin, and John G. Kelton. Platelet life cycle, Quantitative disorders. Blood principles and practice of haematology, 2nd edition, Lippincott Williams & wilkins, P.984-1018.
- Theodore E. Warkentin, John G. Kelton. Thrombocytopenia due to platelet destruction and hypersplenism, haematology basic principles and practice, 4th edition, Elsevier, 2005; P. 2305-2633.
- Vatsla Dadhwal, Deepika Deka. Hypertensive disorders in pregnancy. The textbook of medical disorders in pregnancy an upade, Jaypee brothers (P) Ltd, New Delhi, P.217 to 226.
- Vivke Arora. Pregnancy induced hypertension: Aetio pathogesis, features and complications, Obs & Gynae today, August 2005; Vol X No. 8, P.446-451.

11075

- Ware Branch.D, Flint Porter. T. Hypertensive disorders during pregnancy. Danforth's obstetrics and gynaecology, 8th edition, Lippincott Williams & Wilkins, 1999; P. 309-326.
 Wayne R. Cohen. Complications of preeclampsia. Cherry and
- Wayne R. Cohen. Complications of preeclampsia. Cherry and merkatz's complications of pregnancy, 5th Edi, Lippincott Williams and Wilkins, 2000; P. 251-289.

William M. Barron. Hypertension. Medical disorders during pregnancy, 3rd Edition, Mosby, P.1-12.
