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ARTICLE INFO                                        ABSTRACT 
 
 

 

In this paper least cost design of a prismatic simple supported singly reinforced rectangular beam  
with varied spans of 5m, 7m, 9m, 11m and 13m and uniform concentrated load of 100KN based 
on flexural constraint of the American Concrete Institute (ACI 318/95) is reported. The cost 
function of the beam was developed based on the unit costs of 1:2:4 concrete mix, formwork, 
steel and link reinforcements. The unit cost of 1:2:4 concrete mix used was 30,000 per m3 of 
concrete, 1,000 per m2 of formwork, 300 per kg of steel reinforcement. The unit cost per kg of  
link reinforcement  was assumed to be half the unit cost of steel reinforcement. The design 
variables were the depth and steel reinforcement ratio. The width of the beam was kept constant 
as 0.225m. The deign variables were appended to the Lagrangian multiplier which was used an 
the optimization process and a FORTRAN program was used to facilitate the needed optimal 
solutions. It was shown among other findings that the depth of the beam decreased as the steel 
ratio increased but the total cost per unit length reduced showing that it is cheaper to increase the 
area of steel reinforcement and reduce the depth of beam irrespective of its length.   
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INTRODUCTION 
 

Optimization techniques play an important role in structural 
design. One of the design philosophies is that the structure 
must be economical both in terms of construction and 
maintenance cost[1]. This can be achieved through the process 
of optimization.  The optimal design of beams was first 
proposed by Galileo[2] although his calculations were wrong. 
Apparently, the doctoral dissertation by E.J. Haug Jr. [3] ( see 
also [4]) in 1966 was one of the first modern attempts to use a 
digital computer  as a tool for the optimal design of this 
structural  element. Haug reduced the non-linear optimal 
design problem to Lagrange problem in the Calculus of 
Variations with inequality constraints. His model considered a 
beam made of a linearly elastic material of known density 
with two supports and a certain given load. The control  
variables were the values of cross sections at different points 
along the beam, and constraints on the stress, shear and 
deflection were imposed. Haug used an iterative method based 
on the generalized Newton’s algorithm to solve statically 
determinate beams. Venkayya[5] developed a method based on 
an energy criterion and a search procedure based on constraint 
gradient values for the design of structures subjected to static 
loading. His method can handle very efficiently: (a) design    
for multiple loading conditions, (b) stress constraints,  
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(c) displacement constraints and (d) limits on sizes of the 
elements. This method also has been successfully applied to 
the design of trusses, frames and beams. In these cases, the 
weight of the structural element is the parameter to be 
minimized. Karihaloo [6] presented a model to minimize the 
maximum deflection of a simply supported beam under a 
transverse concentrated load. Haug and Arora [7] used the 
gradient projection method to optimize the design of simply 
supported and clamped beams with constraints on stress, 
deflection, natural frequency and bounds on the design 
variables. Again, the weight (volume) of the beam is the 
parameter to be minimized. Saouma et al.[8] developed a 
method for minimum cost design of simply supported, 
uniformly loaded, partially prestressed concrete beams. This 
model uses nine design variables: six geometrical dimensions, 
area of prestressing steel and area of tensile and compressive 
mild reinforcement. The imposed constraints are on the four 
flexural stresses, initial camber, dead and live load deflections, 
ultimate shear and ultimate moment capacity with respect to 
both the cracking moment and the applied load. This model 
was solved using the Penalty- Functions method coupled with 
Quasi-Newton unconstrained optimization techniques. Das 
Gupta et al.[9] applied generalized geometric programming to 
the optimal design of a modular floor system, which consisted 
of reinforced solid concrete and voided slab units supported  
on steel beams. One of the most remarkable characteristics of 
this model is that it defines a function representing the cost of 
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the floor system in terms of design variables, length, width 
and thickness of components, and other engineering cost 
parameters. This function is minimized subject to various 
constraints depending on stresses and deflections, and a dual-
based algorithm was used to solve it. 
 
Some other authors have used multiobjective optimization 
techniques to deal with this problem. For example, Rao[10] 
studied a cantilever  beam with a hollow rectangular  cross 
section and tip mass, for which he minimized its structural 
mass and its fatigue damage, while he maximized its natural 
frequency. After using many different approaches (i.e., global 
criterion, game theory, goal attainment, utility function, etc.), 
he concluded that game theory gave the best results. Also, 
Osyczka [11] used the min-max method for the optimal design 
of an I-beam. More recently, Lounis and Cohn [12] considered 
the design of a posttensioned floor slab and a pretensioned 
highway bridge system for two conflicting objectives: 
minimum cost and minimum initial camber. They used the 
 constraint method to transform this multiobjective 

optimization problem into a single nonlinear optimization 
problem that they solved using the projected Lagrangian 
method. The objective of this paper is to formulate a model for 
least cost design of a singly reinforced concrete rectangular 
beam. The design variables were the depth and steel ratio.  
The model was solved using the method of Lagrangian 
multiplier. 
 
Least cost design model derivation 
 
Consider an ith simply supported reinforced concrete 
rectangular beam shown below in figure 1. 
 

 
Where il  = 5m, 7m, 9m, 11m and 13m. The cross- section of 

all the beams including reinforcements is uniform since the 
beam is prismatic. 
 
 
 
 
 
 
 
 
 
 
 
The objective function is the algebraic sum of all the costs of 
the elements of the beam given as  

ssscfcc ACACdbCACL
2

1)2(    [1] 

Where 

cA Area of concrete 

cC Cost coefficient of concrete 

sA Area of steel reinforcement  

sC  Cost coefficient of steel 

fA  Area of formwork 

fC  Cost coefficient of formwork 

b  breadth of beam 

d  depth of beam 

cA bd              [2] 

bdAs                [3] 

Substitution of equations [2] and [3] in equation [1] transforms 
equation [1] to 

bdCbdCdbCbdCL scfc 
2

1)2(          [4] 

Where 
 steel ratio 

The moment of resistance of the AC1 – 318/95 is used as the 
design constraint. This represents the ultimate moment of 
resistance of all the beams cross-section given as 
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where  = strength  reduction factor  = 0.90 for flexure. 

 Substituting  for sA transforms equation [5] to 
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The steel ratio,   is restricted to 
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Steel ratio that produces the balance strain  condition is given 
as 
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Where 

85.0  for psif c 40001   

a = depth of equivalent  rectangular stress block. 
From equation [8], 
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From equation [10], 
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From equation [9], 

0196.00262.075.0
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 x  

From equation [7], steel ratio is bounded on the interval of 

0196.000336.0 
b

                         [11] 

      

As 

d 

b = 0.225m 
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 Taking   at an interval  of 0.005, the values of   used in 

the least cost design are 
0.0034, 0.0084, 0.0134, 0.0184, 0.0196. 
From equation (6), 
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Substituting for a in equation [6] gives 
Where 

cy ff 1,  Characteristic strength of steel reinforcement and 

concrete respectively.  

 db,  Width and depth of beam respectively. 
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The objective function is to optimize the cost of reinforced 
concrete beam subject to the constraint on the moment given 
by 
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Where 

uM Applied bending moment due to 100KN load at centre 

of span of the individual beams. 
The unconstrained cost optimization problem is given as a 
lagrange function as 
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The necessary conditions for minimum of    ,,dF  are 
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Equations [17]  [18] and [19] are called the stationary points. 

From structural analysis, the maximum moment uM for each 

loaded span is 

4
iPL

             [20] 

 
 
 
 
 
 
 
 
 
 

Where  

mandmmmmLi 1311,9,7,5  
 

A fortran program was used to obtain the optimal results. 
From the results of the executed program, it can be seen that 
the process of arriving at the least cost design of a simply 
supported rectangular reinforced concrete beam is an iterative   
process which terminates once the least cost is arrived at, but 
this was done within the limit of steel ratio. It is observed that 
at different lengths, the depth of the beam decreases as the 
steel ratio increases, but the total cost per unit length reduces. 
Conclusively, for any length of beam, the least cost can be 
gotten by increasing the area of steel reinforcement and 
reducing the depth of the beam as the depth of the beam 
decreases with increase in steel ratio. 
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