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where  :f  R R
 
 is a convex function and 

Here we list existing divergence measure which is the category of Csiszar’s f
generating function f.
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In whole paper, in the section 2, we have introduced information inequalities. New non-symmetric information divergence 
measure has derived in section 3. Bounds of new information divergence measure in terms of Kullback-Leibler divergence 
measure have studied in section 4. In section 5, give the numerical bounds of new non-symmetric information divergence in terms 
of Kullback-Leibler divergence measure.  
 
INEQUALITIES RELATED WITH CSISZAR’S F-DIVERGENCE MEASURES 
 
The following proposition is one of the results of the theorem given in (Taneja and Kumar, 2004) and similar line to (Dragomir, 
2001; Jain and Saraswat, 2013 and Jain and Saraswat, 2013). 
 

Proposition 2.1:- Let : (0, )f   R
 
be a mapping which is normalized

 
i.e.

 
(1) 0f   and satisfies the assumptions. 

(i) f is twice differentiable on (r, R) .where 0 1r R      
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The case s=0, s=1 of proposition (2.1) gives 
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In view of proposition (4.1) we can state the following results. 
 
NON-SYMMETRIC DIVERGENCE MEASURE 
 
 In this section we introduce a new information divergence measure which is the category of Csiszar’s f-divergence measure.  Let 

us consider the function : (0, )f   R
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Hence function f (t) is convex from equation (3.1) and figure 3.1, and (1) 0f  i.e. normalized.  

The f-divergence measure corresponding to function (3.1) is given by 
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where “ ( , )N P Q ” is may be combination of Harmonic , Arithmetic and 
2 -divergence measure. 

 
 

 

Figure 3.1. Graphical presentation of New Measure 

( , )N P Q  
 

 

Figure 3.2. Comparison of New Measure ( , )N P Q with 

some well-known divergence measures 
 

It is clear that from the figure 3.1 and 3.2 the convex function ( )f t  gives a steeper slope. Further (1) 0 ,f  so that 

( , ) 0N P P 
 
and the convexity of the function ( )f t ensure that the measure (3.2) is non-negative.  

 

In following sections 4 we present particular cases of the proposition (2.1) using the measure ( , )N P Q  given in equation (3.2). 
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BOUNDS IN TERMS OF KULLBACK-LEIBLER DIVERGENCE MEASURE 
 

RESULTS 
 

Result 4.1.1:-  Let , nP Q and 0s  .Let there exists r, R such that r < R and 
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Proof: - From equations (3.1), (3.2) & (4.1), we get 
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Equations (2.6) & (2.7) of proposition (2.2) using equations (3.2), (4.3) and (4.4) gives the result (4.1) & (4.2). 
 
Result 4.1.2:-  
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(i)If  0 0.76r  , then  
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Proof: - From equations (3.1), (3.2) & (4.2), we get 
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Equations (2.6) and (2.7) of proposition (2.2) using equation (3.2), (4.7), (4.8) & (4.9) give the results (4.5) & (4.6).  

 
NUMERICAL ILLUSTRATIONS 

 
Let P be the binomial probability distribution for the random valuable X with parameter (n=8 p=0.5) and Q its approximated 
normal probability distribution.The following table have also discussed by Pranesh Kumar and Andrew Johnson in 2005. 
 

Table 5.1 
 

x 0 1 2 3 4 5 6 7 8 

p (x) 0.004 0.031 0.109 0.219 0.274 0.219 0.109 0.031 0.004 
q (x) 0.005 0.030 0.104 0.220 0.282 0.220 0.104 0.030 0.005 

p(x)/q(x) 0.774 1.042 1.0503 0.997 0.968 0.997 1.0503 1.042 0.774 
N(P, Q) 0.00081 0.00013 0.00096 0.00018 0.0009 0.00018 0.00096 0.00013 0.0008 
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Here r = 0.77 and R = 1.05 are the lower and upper bounds. Now, we shall discuss the numerical bounds of new non-symmetric 
information divergence measure in terms of Kullback-Leibler divergence measure using equation (4.1), (4.2), (4.5) and (4.6) and 
the above table, then we get,  
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