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INTRODUCTION 
 
Occurrence of earthquake is a cyclic phenomena, two major 
seismic events are usually separated by a comparatively long 
aseismic periods of the order of few decades or so. To 
understand the mechanism of earthquake process it is 
necessary to develop mathematical models to study the small 
ground deformation observed during the aseismic periods in 
seismically active regions. Modelling of aseismic ground 
deformation were carried out by a number of seismologist 
including Maruyama, (1964, 1966), Rybicki, (1971), Sato, 
(1972), Rosen and Singh (1973), Iwasaki  
Mukhopadhyay et al. (1979a), Mukhopadhyay, A. et al. 
(1979b), Mukhopadhyay, A., S. Sen and Paul , B.P. (1980a), 
Mukhopadhyay, Sen and Paul, (1980b), Ghosh,
Mukhopadhyay and Sen (1992), Segal (2010) did a wonderful 
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ABSTRACT 

Stress accumulation during the aseismic period in a seismically active regions
research during the last few decades. Mathematical modelling has been formulated to study the nature 
of stress accumulation during this quasi static aseismic period. In the present case a rectangular strike 
slip fault of finite length has been taken to be situated in a linearly viscoelastic half space representing 
the Lithosphere-Asthenosphere system. The model consist of the properties of both the Maxwell and 
the Kelvin (Voigt) type material. Analytical expressions for displacement, s
been formulated and computational work with suitable model parameters have been carried out. A 
details study of these expressions may be useful in formulating an effective earthquake prediction 
programme.  

This is an open access article distributed under the Creative Commons Att
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Occurrence of earthquake is a cyclic phenomena, two major 
seismic events are usually separated by a comparatively long 
aseismic periods of the order of few decades or so. To 
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work in analyzing the displacement, stress and strain in the 
layered medium. In the earlier works in most of the cases 
elastic or viscoelastic half space or layered medium were 
considered to represent the lithosphere
Observations in seismically active regions suggest that linear 
viscoelastic material of Maxwell and or Kelvin type may be a 
suitable representation of the system. In many cases faults are 
taken to be too long compare to its depth so that the problem 
reduce to a 2D model. However there may be faults which are 
not so long. In view of these we consider a strike slip fault of 
finite length situated in a linear viscoelastic solid combining 
both the properties of Maxwell and Kelvin type material. The 
system is under the action of tec
mantle convection or similar other processes.
 
Formulation 
 
We consider a strike-slip fault F of length 2L (L
width D situated in a linearly viscoelastic half space.
Cartesian co-ordinate system is used with the midpoint O of 
the fault as the origin, the strike of the fault along the 
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not so long. In view of these we consider a strike slip fault of 
finite length situated in a linear viscoelastic solid combining 
both the properties of Maxwell and Kelvin type material. The 
system is under the action of tectonic forces generated due to 
mantle convection or similar other processes. 
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�� axis perpendicular to the fault and �� axis pointing 
downwards so that the fault is given by �:	(− � ≤ �� ≤
�,	�� = 0,0 ≤ �� ≤ �).  
 

 
 

  Fig. 1. The fault and the co-ordinate axes 
 

Constitutive equations (stress-strain relations) 
 
For the linear viscoelastic type medium combining both the 
properties of Maxwell and Kelvin(Voigt) type materials the 
constitutive equations have been taken as: 
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where � is the effective viscosity and �  is the effective rigidity 
of the material. 
 

Stress equation of motion 
 

The stresses satisfy the following equations (assuming 
quasistatic deformation for which the inertia terms are 

neglected) and body forces does not change during our 
consideration. 
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Where, (−∞ < �� < ∞,−∞ < �� < ∞,			�� ≥ 0,			� ≥ 0) 
 
Boundary conditions 
 
The boundary conditions are taken as, with t=0 representing an 
instant when the medium is in aseismic state: 
 
lim

��→ ��
���(��,��,��,�) 

= lim
��→ ��

���(��,��,��,�)= ��	(���), 

�� = 0,0 ≤ �� ≤ �,� ≥ 0																																	(3.1) 
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���(��,��,��,�) 

= lim
��→ ���

���(��,��,��,�)= ��	(���), 

�� = 0,0 ≤ �� ≤ �,� ≥ 0																																(3.2) 
 
Assuming that the stresses maintaining a constant value ��at 
the tip of the fault along ��axis (the value of this constant 
stress is likely to be small enough so that no further extension 
is responsible along the ��axis). 
 
���(��,��,��,�)→ �∞		��	|��|→ ∞,	 
−∞ ≤ �� ≤ ∞,�� ≥ 0,� ≥ 0																										(3.3) 
 
On the free surface  
 
�� = 0,(−∞ ≤ ��,�� ≤ ∞, � ≥ 0) 
 
���(��,��,��,�)= 0																																				(3.4) 
 
���(��,��,��,�)= 0																																				(3.5) 
 
���(��,��,��,�)= 0																																				(3.6) 
 
Also as �� → ∞,(−∞ ≤ ��,�� ≤ ∞,� ≥ 0) 
 
���(��,��,��,�)= 0																																			(3.7) 
 
���(��,��,��,�)= 0																																			(3.8) 
 
���(��,��,��,�)= 0																																			(3.9) 
 
���(��,��,��,�)= 0, ��	|��|→ ∞,	 
 
−∞ ≤ �� ≤ ∞,�� ≥ 0,� ≥ 0																	(3.10) 
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(where  �∞(�)  is the shear stress maintained by mantle 
convection and other tectonic phenomena far away from the 
fault). 
 
Initial conditions 
 

Let (�)�,(�)�,(�)�,������,������			�,� = 1,2,3		are the values 

of u, v, w, ���, 	���	respectively at time t=0. They are functions 

of ��,��,��	and satisfy the relations (1.1) to (3.10). 
 
Displacements, Stresses and Strains in the absence of any 
fault movement 
 
In the absence of any fault movement the displacement and 
stresses are continuous throughout the model. In order to 
obtain the expressions for displacement, strain and stresses we 
take Laplace transform of (1.1) to (3.10) with respect to t. The 
resulting boundary value problem can be solved by taking 
integral transforms of the constitutive equations and the 
boundary conditions with respect to t. The solutions obtained 
are given below. (as shown in Appendix)   
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From the above expressions we find that as 		� → ∞,��� →
��,��� → τ∞ and all the others stress components  
���,���,���,��� → 0.  However the rheological behaviour of 
the material near the fault F are assumed to be capable of 
withstanding stress of magnitude ��, called critical value of the 
stress where   ��		is less than  �∞	. We assume that when the 
accumulated stress ��� near the fault exceeds this critical level 
after a time, T, say, a creeping movement across F sets in, and 
thereby releasing the accumulated stress to a value less than ��. 
The magnitude of creep is expected to satisfy the following 
conditions: 

(C1) Its value will be maximum near the middle of the fault on 
the free surface. 
 
(C2) It will gradually decrease to zero at the tips of the fault 
(�� = ±�,�� = 0,0 ≤ �� ≤ �) along its length. 
 
(C3) The magnitude of the creep will decrease with �� as we 
move downwards and ultimately tends to zero near the lower 
edge of the fault. (�� = ±�,�� = 0,�� = �) 
 
If 	�(��,��) be the creep function, it should satisfy the above 
conditions. If we assume (���)�=20 bar, ��=150 bar, it is found 
that ��� reaches the value  �� in about 59 years (T=59 years). 
In our subsequent discussions we shall take T to be 59 years. 
The relevant boundary value problem after commencement of 
the creeping movement across F ,� ≥ �  has been described in 
Appendix. 
 
Displacements, Stresses and Strains after the 
commencement of the fault creep 
 
We assume that after a time T, the stress component  ��� which 
is the main driving force for the strike-slip motion of the fault, 
exceeds the critical value �� and the fault starts creeping 
characterized by a dislocation across the fault as discussed in 
Appendix. We solved the resulting boundary value problem by 
modified Green's function method following Maruyama, 
(1964, 1966), Rybicki, (1971) and correspondence principle 
(as shown in Appendix) and get the solutions for 
displacements, strain and stresses as given in the following 
equation (5). 
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Numerical computations 
 
Following  Catlhes, (1975) Aki, Richards, (1980) and the 
recent studies on rheological behaviour of crust and upper 
mantle by  Chift, Lin, Barcktiausen, (2002), Karato, (2010) the 
values to the model parameters are taken as: 
 
We consider �(��,��) to be  
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which satisfies all the conditions (C1) to (C3) stated above. 

� = 	3.5 × 10��		dyne/sq.cm .,			  
� = 5 × 10��		poise 
D = Depth of the fault =  10  km.  ( noting that the depth of the 
major earthquake faults are in between 10-15 km. ) 
2L =  Length of the fault  = 40 km.,          
 

�� = � − � 
�∞ = 200	bar ,          				(���)� = 20	bar  
(���)� = 20	bar,          (���)� = 20	bar  
 
We assume, �(��)= �.�� where 
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The velocity of creep assume to be constant. In our model we 
take v = 0 cm/year, 1 cm/year, 3 cm/year, 6 cm/year, 10 
cm/year. 
 
�� = 150	���, with this value of  �� we find that T, the time of 
commencement of fault creep is approximately 58.026 years. 
 
We compute the following quantities: 
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RESULTS AND DISCUSSION  
 
Displacement on the free surface due to the creeping 
movement across the fault 
 
Fig. 2 shows the displacement component u on the free surface 
within the region −25	��.≤ �� ≤ 25	��. and −10	��.≤
�� ≤ 10	��. The positive values of u has been marked by blue 
colour while the negative value of u has been marked red. 
From the figure it appears that the positive and negative 
displacement components have a nature similar to a 
quadrennial distribution as observed in seismically active 
regions during an earthquake. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 3 a contour diagram for the displacement component 
has been shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Surface share strain under the action of tectonic forces in 
the absence of fault movement 
 
In Fig. 4 the accumulation of surface share strain under the 
action of  τ∞ against time has been plotted. We find that share 
strain ��� increases slowly and attain a value of about 2×

10�� on the average before the commencement of the fault 
movement which is inconformity with the observational value 
during the aseismic period. The magnitude of the share strain 
��� due to the creeping movement across the fault has been 
found to be of the order of   10��/year. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pattern of stress accumulation/release due to movement of 
the fault-Normal stress  ��� 
 
From Fig. 5 the stress component is found to be slowly 
decreasing from its initial value and tend to zero with time if 
there be no creep across the fault. But a creeping movement 
across the fault causes a further reduction in the stress 
component after time T. The magnitude of reduction depends 
upon the velocity of creep with increasing v the stress 
decreases further and ultimately becomes negative. For 
example, when v = 1 cm/year the stress become negative about 
36 years after T and when v = 10 cm/year the stress become 
negative only after 7 years from the commence the creeping 
movement across the fault. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pattern of stress accumulation/release due to movement of 
the fault-Share stress  ���: 
 

From Fig. 6 we find that the share stress ��� has a similar 
feature to that of ���. The stress decreases with time and 
ultimately becomes negative. But here the rate of decrease is 
considerably smaller compare to ���. For example, v = 1 

 
Figure 2. Displacement on the free surface due to the creeping 

movement across the fault 
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Figure 3. Contour diagram for displacement on the free surface 

due to the creeping movement across the fault 

 

 
 

Figure 4. Surface share strain under the action of tectonic 
forces in the absence of fault movement 

 

 
 

Figure 5. Pattern of stress accumulation/ release due to 
movement of the fault-Normal stress ��� 
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cm/year the time taken for the stress becomes negative is 
approximately 116 years after T. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pattern of stress accumulation/release due to movement of 
the fault-Share stress  ��� 
 
From Fig. 7 we find that the nature of shear stress ��� is 
different from that of  ��� and ���. The stress starts increasing 
from its initial value 150 bars at time T = 59 years. The 
creeping movement across the fault decreases the rate of 
increase further. With v = 1 cm/year it becomes 171.2 bar at t 
= 100 years. As v increases the rate decreases further. For 
example, v = 3 cm/year, the stress becomes 154.2 bar at t = 
100 years. The stress get released with further increase in v for 
example v = 6 cm/year the stress becomes 128.6 bar at t = 100 
years. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Appendix-A 
 
Displacements, stresses, and strains before the 
commencement of the fault creep 
 
We take Laplace Transform of all constitutive equations and 
boundary conditions 

������� =
	
���
���

(� + 2��)

�1 +
��
�
�

		+

�
�
(���)�

�1 +
��
�
�

−

2� �
∂u
∂y�

�
�

�1 +
��
�
�
																							(�1) 

 

where  ������� = ∫ ����
���∞

�
�� , ( p > 0)  being the Laplace 

transform variable and similar other equations. 
 
Also the stress equation of motion in Laplace transform 
domain as: 
 
�

���
(�������)+

�

���
(�������)+

�

���
(�������)= 0				(�2) 

 
�

���
(�������)+

�

���
(�������)+

�

���
(�������)= 0			(�3) 

 
�

���
(�������)+

�

���
(�������)+

�

���
(�������)= 0				(�4) 

 
lim

��→ ��
�������(��,��,��,�) 

= lim
��→ ��

�������(��,��,��,�)= ��	(���), 

�� = 0,0 ≤ �� ≤ �,� ≥ 0																										(�5) 
 
lim

��→ ���
�������(��,��,��,�) 

= lim
��→ ���

�������(��,��,��,�)= ��	(���), 

�� = 0,0 ≤ �� ≤ �,� ≥ 0																									(�6) 
 
On the free surface �� = 0,	 
 
(−∞ ≤ ��,�� ≤ ∞, � ≥ 0) 
�������(��,��,��,�)→ �∞		��	|��|→ ∞,	 
−∞ ≤ �� ≤ ∞,�� ≥ 0,� ≥ 0																					(�7) 
 
�������(��,��,��,�)= 0																																		(�8) 
 
�������(��,��,��,�)= 0																																		(�9) 
 
�������(��,��,��,�)= 0																																	(�10) 
 
Also as �� → ∞,(−∞ ≤ ��,�� ≤ ∞,� ≥ 0) 
 
�������(��,��,��,�)= 0																																	(�11) 
 
�������(��,��,��,�)= 0																																		(�12) 
 
�������(��,��,��,�)= 0																																		(�13) 
 
�������(��,��,��,�)= 0,		 
��	|��|→ ∞,−∞ ≤ �� ≤ ∞,�� ≥ 0,� ≥ 0				(�14) 
 
Using (A1) and other similar equations assuming the initial 
fields to be zero, we get from (A2) 
 
 ∇�(��)= 0																																																							(A15)                                                                                                                             

 
 

Figure 6. Pattern of stress accumulation/ release due to 
movement of the fault-Share stress  ��� 

 

 
 

Figurr 7. Pattern of stress accumulation/ release due to 
movement of the fault-Share stress  ��� 
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Thus we are to solve the boundary value problem (A15) with 
the boundary conditions (A5) to (A14) 
 
Let,   
 

�� =
(�)�

� +
�
2�

+ ���� + ���� + ����															(�16) 

 
be the solution of (A15), where   
 

�� = �� −
(�)�

� +
�
2�

 

 
Using the boundary conditions (A5) and (A14) and the initial 
conditions we get, 
 

�� =
��
�

�� +
�
�
�

2� �� +
�
2�

�
−

(���)�

2� �� +
�
2�

�
													(�17) 

 

�� =
�∞

2�� �� +
�
2�

�
																																												(�18) 

 
�� = 0																																																																				(�19) 
 
On taking inverse Laplace transform, we get 
 

u(��,��,��,�)= (u)�e
�

μ�
�η 

+ y� ��� �
1

μ
−

1

2μ
		e

�
μ�
�η�−

(τ��)�
2μ

e
�

μ�
�η

+
y�τ∞

μ
�1 − e

�
μ�
�η��							(A20) 

 

v(��,��,��,�)= (v)�e
�

μ�
�η 

																																+
y�τ∞

μ
�1 − e

�
μ�
�η�									(�21) 

 

w(��,��,��,�)= (w)�e
�

μ�
�η																												(A22) 

 

���(��,��,��,�)= (τ��)�e
�

μ�

η   

																																		+	�� �1 − e
�

μ�

η �																(A23)    

 

���(��,��,��,�)= (τ��)�e
�

μ�
η  

																																								+ τ∞ �1 − e
�

μ�
η �					(A24) 

 

���(��,��,��,�)= (τ��)�e
�

μ�
η 													(A25) 

 

���(��,��,��,�)= (τ��)�e
�

μ�
η 													(A26) 

 

���(��,��,��,�)= (τ��)�e
�

μ�
η 													(�27) 

 

���(��,��,��,�)= (τ��)�e
�

μ�
η 													(�28) 

 
Appendix-B 
 
Displacements, stresses and strains after the 
commencement of the fault creep 
 
We assume that after a time T the stress component ���, which 
is the main driving force for the strike-slip motion of the fault, 
exceeds the critical value ��, the fault F starts creeping then (8) 
to (11) and (A15) are satisfied with the following dislocation 
conditions of creep across F: 
 
[�]� = �(��)�(��,��)�(��)																																(B1)	                                    
 
where [�]� =  The discontinuity in u across F, and �(��) is 
Heaviside unit step function. 
 
That is  
 
[�]� = lim

��→ ���

� − lim
��→ ���

�,	 

 
− � ≤ �� ≤ �,0 ≤ �� ≤ �															(B2) 
 
Taking Laplace transform in (13) with respect to ��, we get 
 
[��] = ��(�)�(��,��)																																													(B3)    
                                           
The fault creep commence across F after time T, we take 
 
[�]� = 0 for  �� ≤ 0 that is � ≤ �, F is located in the region 
(− � ≤ �� ≤ �,�� = 0,0 ≤ �� ≤ �). 
 
We try to find the solution as: 
 

�

� = (�)� + (�)�
� = (�)� + (�)�
� = (�)� + (�)�

��� = (���)� + (���)�
��� = (���)� + (���)�
��� = (���)� + (���)�
��� = (���)� + (���)�
��� = (���)� + (���)�
��� = (���)� + (���)�
��� = (���)� + (���)�⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

																																					(B4) 

 

Where (�)�,(�)�,(�)�,(���)�,������		are continuous 

everywhere in the model and are given by (4); i, j = 1,2,3. For 

the second part (�)�,(�)�,(�)�,(���)�,������		are obtained by 

solving modified boundary value problem as stated below. We 
note that 	(�)�,(�)�  are both continuous even after the fault 
creep, so that [�]� = 0,[�]� = 0, while [�]� satisfies the 
dislocation condition given by (B2). 
 
The resulting boundary value problem can now be stated as: 
[�]� satisfies 3D Laplace equation as:					∇�(��)� = 0		(B5)         
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Where (��)� is the Laplace transformation of (�)� with respect 
to t, with the modified boundary condition. 
 
�������(��,��,��,�)= 0,		 
��	|��|→ ∞,−∞ ≤ �� ≤ ∞,�� ≥ 0																			(�6) 
 
And other boundary conditions are same as (A8) to (A14). 
 
Now we solve the boundary value problem by using a 
modified Green's function technique developed by Maruyama, 
(1964, 1966), Rybicki, (1971) and the Correspondence 
Principle. 
 
Let, �(��,��,��) is any point in the medium and 
�(��,��,��)		is any point on the fault, then we have 
 

(��)�(�)= ��[(��)�(�)]�(�,�)������																								(�7) 

 
where the integration is taken over the fault F.  
 
Therefore ,   [(��)�(�)] = ��(�)�(��,��) 
 
where G is the Green's function satisfying the above boundary 
value problem and 
 

�(�,�)= �
�

���
��(�,�)																																					(�8) 

 
Where 
 
��(�,�)=  
 

�
1

{(�� − ��)
� + (�� − ��)

�+ (�� − ��)
�}

�
��

−
1

{(�� + ��)
� + (�� − ��)

�+ (�� − ��)
�}

�
��
� 

 
Therefore, 
 
�(�,�)=  
 

�
(�� − ��)

{(�� − ��)
� + (�� − ��)

�+ (�� − ��)
�}

�
��

−
(�� − ��)

{(�� + ��)
� + (�� − ��)

�+ (�� − ��)
�}

�
��
� (�9) 

 
Now, 
 

(��)�(�)= ����(�)�(��,��) 

�
(�� − ��)

{(�� − ��)
� + (�� − ��)

�+ (�� − ��)
�}

�
��

−
(�� − ��)

{(�� + ��)
� + (�� − ��)

�+ (�� − ��)
�}

�
��
� ������ 

= ��(�)��(��,��,��)	(���) 
 
Taking Inverse Laplace transformation, 

(�)�(�)=
�(� − �)

2�
 

																			�(� − �)��(��,��,��)																					(�10) 
 

We also have, 
 

(�������)� =
(� + 2��)

1 +
��
�

		
�(��)�
���

																															(�11) 

 

and similar other equations. 
 

Now, taking inverse Laplace transformation we get 
 

(���)� =
�

2�
�(� − �)��(��,��,��) 

 

�� ��(�)�� +

���

�

� ��(�)�
�
�(�����)

� ��

���

�

�									(�12) 

 
Where, 
 

��(��,��,��)= �� 3.�(��,��)

�

�

�

��

 

 

�
��(�� + ��)

{(�� + ��)
� + ��

�+ (�� − ��)
�}

�
��

−
��(�� − ��)

{(�� − ��)
� + ��

�+ (�� − ��)
�}

�
��
� ������ 

 
Similarly the other components of the displacements, stresses 
and strains can be found out. These are given in (5). 
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