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This paper describes a theory of surface waves propagating in a non-homogeneous, isotropic, 
viscoelastic solid medium of nth order including time rate of strain. The theory of generalized 
surface waves has been employed to investigate particular cases of Rayleigh wave, Love wave and 
Stoneley wave. When viscous field is neglected, the wave velocity equation of this generalized type 
of surface waves is in complete agreement with the corresponding classical results.  
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INTRODUCTION 
 

When seismic waves propagate underground, they are influenced not only by the anisotropy of the media, but also by intrinsic 
viscosity of media given by Carcione [1]. Therefore, in order to accurately describe the underground propagation of the seismic 
waves and then more precisely guide seismic data acquisition, processing and interpretation, media models should be chosen that 
can simultaneously imitate anisotropic characteristics of formation and viscoelastic characteristics for numerical simulation and 
analysis of wave fields As a result, the theory of surface waves has been developed by Stoneley, Bullen, Ewing et al., Hunters and 
Jeffreys.  The effect of gravity on wave propagation in an elastic solid medium was first considered by Bromwich [2], treating the 
force of gravity as a type of body force. Love [3] extended the work of Bromwich investigated the influence of gravity on 
superfacial waves and showed that the Rayleigh wave velocity is affected by the gravity field. Sezawa [4] studied the dispersion of 
elastic waves propagated on curved surfaces. 
 
The transmission of elastic waves through a stratified solid medium was studied by Thomson [5]. Haskell [6] studied the 
dispersion of surface waves in multilayered media. A source on elastic waves is the monograph of Ewing, Jardtezky and Press [7]. 
Biot [8] studied the influence of gravity on Rayleigh waves, assuming the force of gravity to create a type of initial stress of 
hydrostatic nature and the medium to be incompressible. Taking into account, the effect of initial stresses and using Biot’s theory 
of incremental deformations, Dey modified the work of Jones [9]. De and Sengupta [10] studied many problems of elastic waves 
and vibrations under the influence of gravity field. Sengupta and Acharya [11] studied the influence of gravity on the propagation 
of waves in a thermoelastic layer. Brunelle [12] studied the surface wave propagation under initial tension of compression. Wave 
propagation in a thin two-layered laminated medium with stress couples under initial stresses was studied by Roy [13]. Datta [14] 
studied the effect of gravity on Rayleigh wave propagation in a homogeneous, isotropic elastic solid medium. Goda [15] studied 
the effect of inhomongeneity and anisotropy on Stoneley waves. Recently Abd-Alla and Ahmed [16] studied the Rayleigh waves in 
an orthotropic thermoelastic medium under gravity field and initial stress. In this work, the problem of nth order viscoelastic 
surface waves involving time rate of strain, the medium being isotropic and non-homogeneous has been studied. Biot’s theory of 
incremental deformations has been used to obtain the wave velocity equation for Stoneley, Rayleigh and love waves. Further these 
equations are in complete agreement with the corresponding classical results in the absence of viscosity and non-homogeneity of 
the material medium. 
 

2. Formulation of the problem  
 

Let M1 and M2 be two non-homogeneous, viscoelastic, isotropic, semi-finite media. They are perfectly welded in contact to prevent 
any relative motion or sliding before and after the disturbances and that the continuity of displacement, stress etc. hold good across 
the common boundary surface. Further the mechanical properties of M1 are different from those of M2. These media extend to an 
infinite great distance from the origin and are separated by a plane horizontal boundary and M2 is to be taken above M1. Let Oxyz 
be a set of orthogonal Cartesian co-ordinates and let O be the any point on the plane boundary and Oz points vertically downward 
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to the medium Mi. We consider the possibility of a type of wave travelling in the direction Ox, in such a manner that the 
disturbance is largely confined to the neighborhood of the boundary which implies that wave is a surface wave. It is assume that at 
any instant, all particles in any line parallel to Oy having equal displacement and all partial derivatives with respect to y are zero. 
Further let us assume that u, �, w are the components of displacements at any point (x, y, z) at any time t. 
The dynamical equations of motion for three-dimensional non-homogeneous, isotropic, viscoelastic solid medium in Cartesian co-
ordinates are 

 








11 12 13
x y z

   =  



2

2
u

t
,                      (1) 

 








12 22 23
x y z

   = 
 



2

2t
,                      (2) 

 








13 23 33
x y z

   = 




2

2
w

t
.                     (3) 

Where ��be the density of the material medium and �ij = �ji V i, j are the stress components. 
The stress-strain relations for general isotropic, visco-elastic medium according to voigt are  
 
�ij = D�����ij + 2 D��eij                              (4) 
 
Where, D�, D��are the functions of z and are elastic constants  
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Introducing eq (4) in (1), (2), (3), we get 
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We assume that the non-homogeneities for the media M1 and M2 are given by 
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Where �0, �0, �'0, �'0, �0, �'0 and m, l are constants and �K, �K (K = 0, 1, 2,  ..... n) are the parameters associated with Kth 
order visco-elasticity. 
Subsituting eq (9) and (10) in eqs (6), (7), (8), we get 
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To investigate the surface  wave propagation along the direction of Ox, we introduce the displacement potential ��(x, z, t) and 
��(x, z, t) which are related to the displacement components as follows : 
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Substituting eq (15) in eqs (11), (12), (13), we get 
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and similar relations in medium M2 can be formed out by replacing �K, �K, �0 by �'K, �'K, �'0 and so on. 
 
3. Solution of the problem  
 
We seek the solution of (16), (17), (18) in the following forms  
 

(�, �, �)= [f (z), g (z), h (z)] ei��(x–ct)                (21) 
 

Using eqs. (16)-(18) and (19)-(20), we get a set of differential equations for the medium M1 as follows : 
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And those for the medium M2 are given by 
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Equations (22)-(24) and (25)-(27) must have exponential solutions in order that f, g, h will describes surface waves, they must 
become vanishingly small as z ���. 
Hence for the medium  M1  
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 




l

= 0        (35) & (17) 

 
For the media M1 and M2 respectively, we take into considering the real roots of eq (34) and eq (35). The constants A, B and A', 
B' are related with C, D and C', D' in eqs (28)-(30) and (31)-(33) by means of first equations in (22)-(24) and (25)-(27) 

zzzz eeee 2121 '' ,,, of efficients-co  theEquating    to zero after substituting eqs (28)-(30) and (31)-(33) in the first eqs in 
(22)-(24) and (25)-(27)respectively, we get 
C = �1 A ; D = �2 B, C' = �'1A', D' = �'2 B' 
Where  

�j= i
mf 1

2
 [�j2 – 2mf12 �j + h12]                               (36)  

�j'=
i
f l 1

2'
[�j'2 – 2n f1'2 �'j + h1'2]                              (37) & (18) 

 
4. Boundary Conditions  
 
(i) The displacement components at the boundary surface between the media M1 and M2 must be continuous at all times and 
positions. 
i.e.     [u, �, w] M1 = [u, �, w] M2    at z = 0 
(ii) The stress components �31, �32 and �33 must be continuous at the boundary z = 0. 
i.e.     [�31, �32, �33] M1= [�31,�32,�33]M2 at z = 0 
Where  

�31= D
x z x z


 
 

 



 


2

2 2

2

2

2 










,                     (38) 

  
�32= D

z




,                                                          (39) 

�33= D D
z x z 
 



 
 

  










2
2

2

2
2                    (40) 

Applying the boundary conditions, we have 
A(1–i�1�1)+B(1–i�2�2)+A'(i�'1�'1–1)+B'(i�'2�'2-1)=0   (41) 
    E= E'                                      (42) 

 
A(�1+ i�1)+B (�2+i�2)+A'(–�' – i �'1)+B'(–�'2 – i �'2)= 0   (43) 
  
�*K [(2i�1+ �1+ �12 �1) A + (2i �2 + �2 + �22 �2) B]= '*K [(2i �'1+ �'1 + �1'2 �'1)A' +(2i �'2 + �'2 + �2'2 �'2) B']
 (44) 
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�*K[–�3 E]  = '*K [–�'3 E']                  (45) 
 

A [�*K (�12 – 1)+2�*K (�12 – i �1 �1)] + B [�*K (�22 – i �2 �2)]= A' [�'*K (�1'2 – 1) + 2�'*K (�1'2 – i �'1 �'1)] + B' 
[�'*K (B2'2 – 1) + 2 �'*K (�2'2 – i �'2 �'2)]               (46) 
 
Where, 

�j= 



j

, �'j = 



j '

, j = 1, 2.   and  

�*K=   K
K

K

n
i c




0

, �*K =   K
K

K

n
i c




0

 

�'*K=   'K
K

K

n
i c




0

, �'*K =   'K
K

K

n
i c




0

. 

From eqs (42) and (43), we have E = E' = 0. Thus there is no propagation of displacement �. Hence SH-waves do not occur in this 
case. 
Finally, eliminating the constants A, B, E, E' from eqs. (41), (43), (44) and (46), we get 
det (aij)= 0 i, j = 1, 2, 3, 4                                              (47) 
where, 
a21= �1 + i �1,  
a22 = �2 + i �2,  
a23 = –�'1 – i �'1,  
a24 = –�'2 – i �'2, 
a11= (1–i �1 �1),  
a12 = 1–i �2 �2 ,  
a13 = (i �'1 �'1–1),  
a14 = (i �'2 �'2–1), 
a31= �'K [2i �1 + �1 (1 + �12)] ;  

a32 = [2i �2 + �2 (1 + �22)] �*K,  

a33= [2i �'1+�'1 (1+�1'2)] (–�'*K),  
a34 = – [2i �'2+�2' (1+�2'2)] �'*K, 

a41= �*K (�2' – 1) + 2 �*K (�12 – i �1�1),  

a42 = �*K (�22 – 1) +2�*K (�22 – i �2�2),  

a43 = �'*K (1 – �1'2) + 2�'*K (i �1'* �'1 – �1'2),        
a44 = �'*K (1 – �2'2) + 2�'*K (i �'2 �'2 – �2'2). 
 
From this equation (47), we get the velocity of surface waves in common boundary between two viscoelastic, non-homogeneous 
solid media of Voigt type, where the viscosity is of general nth order involving time rate of change of strain. 
 
5. Particular Cases  
 
Stonelay Waves It is the generalized form of Rayleigh waves in which we assume that the waves are propagated along the 
common boundary of two semi-infinite media M1 and M2. Therefore eq (47) determine the wave velocity equation for Stoneley 
waves in the case of general viscoelastic, non-homogeneous solid media of nth order involving time rate of strain. 
Clearly from eq (47), it is follows that wave velocity of the Stonelay waves depends upon the non-homogeneity of the material 
medium and the viscosity.  
     In case of absence of non-homogeneity and viscoelastic medium of 1st order involving time rate of change of strain is taken. 
Then equation (47) reduces to, 
|bij| = 0, i, j = 1, 2, 3, 4......                                            (*) 
Where, 
b11= T1,  b12 = T'1, b13 = –1, b14 = 1, 
b21= 1, b22 = –1, b23 = T2, b24 = T'2, 

      2 / / / 2
31 0 1 1 32 0 1 11 ,  1b i c T b i c T           , 

    /
33 0 1 2 34 0 1 2,  b i c T b i c T          , 
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   / / /
41 0 1 1 42 0 1 1,  b i c T b i c T         , 

  2
43 0 2 0 11 2(b i c T         ( 2

2)i c T , 

  /2 / /
44 0 1 2 0 11 2(b i c T          ( /2

2)i c T , 

Here,  
2 2

2 20 0
1 2

0 1 0 0 1 1

1 , 1 .., 
( 2 ) ( 2 )

c cT T
i c i c

 
       
   

             
(**) 

 / 2 / 2
/ 2 20 0

1 2/ / / / / /
0 1 0 0 1 1

1 , 1 .., 
( 2 ) ( 2 )

c cT T
i c i c

 
       
   

             

 

 
Equation (*) gives the wave velocity equation of Stoneley waves in a viscoelastic media of Voigt type where the viscosity is of  1st  
order involving time rate of change of strain which is completely agreement with classical result given by P.R. Sengupta et al.  
 
Further equation (47), of course, is in complete agreement with the corresponding classical result, when the effect of viscosity and 
non-homogeneity are ignored. 
 
Rayleigh Waves To investigate the possibility of Rayleigh waves in a viscoelastic, non-homogeneous elastic media, we replace 
medium M2 by vacuum, in the preceding problem. 
 
We note also that SH-wave do not occur in this case. 
Thus eqs. (44) and (46), reduces to 
 
(2i �1+ �1 + �12 �1) A + (2i �2 + �2 + �22 �2) B =0     (48) 
[�*K (�12 – 1) + 2�*K (�12 – i �1 �1)] A +[�*K (�22 – 1) + 2�*K (�22 – i �2 �2)] B = 0          (49) 
Eliminating A and B from eqs. (48) and (49), we have 
 
[2i �1 + �1 (�12 + 1)] [�*K (�22 – 1 + 2�*K (�22 – i �2 �2)]– [2i �2 + �2 (�22 + 1)][�*K (�12 – 1) + 2�*K (�12 – i �1 
�1)] = 0                                                                   ……….. (50) 
Equation (50) gives wave velocity equation for Rayleigh waves in a non-homogeneous, viscoelastic solid medium of nth order 
involving time rate of strain. 
 
Also, from eq (50) we see that Rayleigh waves depends on the viscosity and the non-homogeneity of the material medium. 
In the absence of non-homogeneity & considering the viscoelastic media of 1st order including time rate of strain. equation (50) 
reduces to, 
 
       2 2 2

1 0 1 2 0 1 2 0 1 2 21 [ 1 2( ) ] 4 0T i c T i c T i c T T                     

         (51) 
Where T1, T2 are given by (**) 
Thus, equation (51) gives the wave velocity equation of Rayleigh waves in a homogeneous general viscoelastic media of 1st order 
including time rate of strain, which tallies with corresponding classical result of P.R. Sengupta et. al. 
For elastic media / /,     0, K K K K      , 
Where K=1,2……n 
Equation (50) becomes 
[2i �1 + �1 (�12 + 1)] [C1

2 (1– �22 ) –2 C2
2(1– i �2 �2]– [2i �2 + �2 (�22 + 1)][ C1

2 (�12 – 1) + 2 C2
2 (�12 – i �1 �1)] = 0     

…(52) 
 Where, 

                         2 20 0 0
1 2

0 0

2    ,   C C  
 


  .  

. (52) determines the wave velocity equation of Rayleigh waves in a non-homogeneous isotropic elastic medium and this equation 
is in complete agreement with the corresponding classical result of Das et al.  
Further when non-homogeneity of the material medium is neglected,  
Eq. (52) becomes, 

               

22 2 2

4
2 2 2

1 2 2

1 1    1C C C
C C C

     
        

     
               (53) 

                                                                  

255                International Journal of Current Research, Vol. 4, Issue, 12, pp. 249-257, December, 2012 
 



Which is in complete agreement with classical result of Bullen.  
 
The equation (50), of course, is in agreement with the corresponding classical result given by Bullen,  
 
Love Waves To investigate the possibility of love waves in a non-homogeneous, viscoelastic solid media, we replace medium M2 
is obtained by two horizontal plane surfaces at a distance H-apart, while M1 remains infinite. 
For medium M1, the displacement component ��remains same as in general case given by eq. (14).  
For the medium M2, we pressure the full solution, since the displacement component along y-axis i.e. �2 no longer diminishes 
with increasing distance from the boundary surface of two media. 

Thus �'=    E e E ez i x ct z i x ct
1 2

3 3   ' '         (54)  
In this case, the boundary conditions are 

(i) ��and �32 are continuous at z = 0 
(ii) �32 = 0 at z = –H 

applying boundary conditions (i) and (ii) and using eqs (31)-(33) , (38)-(40) and eq (54), we get 
                          E= E1 + E2                                           (55) 

–�3 �*K E= �'*K [�'3 E1 – �'3 E2]                                 
                 (56) 

�'3 E1 e E eH H ' ''3 33 2  = 0                                   
        (57) 
On eliminating the constant E, E1 and E2 from eqs (55), (56) and (57), we get 

   tan (i �'3 H)= 
i K

K

 

 
3

3

*

*' '
                                     

      (58) 
 

Thus equation (58) gives the wave velocity equation for Love waves in a non-homogeneous, viscoelastic elastic solid medium of 
nth order involving time rate of strain.  
In the absence of non-homogeneity & considering the viscoelastic media of 1st order including time rate of strain.  
Equation (58) reduces to, 

     / / / /
1 0 1 1 0 1 1tan 0T i c T H i i c T           

which gives the dispersion equation of Love waves in a viscoelastic solid medium of 1st order involving time rate of strain, which 
is in well agreement with the corresponding classical result given by P.R. Sengupta et. al. 
For elastic media / /,     0, K K K K                  (59) 
(Where K=1,2……n) with absence of non-homogeneity of material medium, equation (59) is in complete agreement with 
corresponding classical result of Bullen.  
The equation (58), of course, is in agreement with the corresponding classical result given by Bullen. 
 
Conclusions  
 

I. Rayleigh waves in a non-homogeneous, general viscoelastic solid medium of higher order of Voigt type, we find that the 
wave velocity equation proves that there is dispersion of waves due to the presence of non-homogeneity and viscosity. 
The results are in complete agreement with the corresponding classical results when non-homogeneity and viscous field 
are neglected.  

II. Love waves in a non-homogeneous, general viscoelastic solid medium of higher order of Voigt type; we find that the 
wave velocity equation proves that there is dispersion of waves due to the presence of non-homogeneity and viscosity. 
The results are in complete agreement with the corresponding classical results when non-homogeneity and viscous field 
are neglected 

III. Wave velocity equation of Stoneley waves is very similar to the corresponding problem in the classical theory of 
elasticity. Here also there is dispersion of waves due to the presence of non-homogeneity and viscoelastic nature of the 
solid. 

IV. The solution of wave velocity equation for Stoneley waves cannot be determined by easy analytical methods however we 
can apply numerical technique to solve this determinantal equation by choosing suitable values of physical constants for 
both media M1 and M2. 
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