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INTRODUCTION 1
o _ o X(A) == (A* + A+2)

The theory of Diophantine equations offers a rich variety of 2

fascinating problems. In particular, Quintic equations, homogeneous 1

and non-homogeneous have aroused the interest of numerous y( A) — _( A4 +A— 2)

mathematicians since antiquity [1-3]. For illustration, one may refer

[4-6] for Quintic equation with three unknowns, [7] for Quintic with

four unknowns and [8-10] for Quintic equation with five unknowns. Z(A) _ E(AA' _ A+ 2)

This paper concerns with the problem of determining non-trivial

integral solutions of the non-homogeneous Quintic equation with five

1 .4
unknowns given by X3 — y3 = Z3 — W3 + 6'[5 A few relations wW(A) = E(A -A-2)
among the solutions are presented.
t(A)=A

METHOD OF ANALYS

AT . . A X,y,Z,w and t are integers, for all values of A.
The Quintic Diophantine Equation with five unknowns to be solved ¥ g

for its non zero distinct integral solutions is Properties:

xC—yd=z3—wi+et° e X(A)-y(A) + 2(A) —W(A) = 0(mod4)
o 2(x(A)-z(A)) HYny +1

Different patterns of solutions of (1) are presented below.
e Y(A(A+D)-w(A(A+D) = x(A(A+1)) - z(A(A+1)) =Prp
Pattern I:

. . Each of the following expressions represents a Nasty number.
Introduction of the transformations

x=c+ly=c-1 2 3{X(A) + V(A) + 2(A) + W(A)}
z=a+lLw=a-1 b) 6{y(A) + w(A) + 2}

in (1) leadsto 2 = a2 +1t° o) 6{X(A) + z(A) — 2}y

Case: i d 6{x(A)+w(A)}

Let c+a) =A% (c-a)=A e) 6{y(A) +z(A)}

Hence, the corresponding solutions of (1) are
poncing @ . Z(A) + W(A) +t(A) is a Biquadratic integer.
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Case: ii

Take (C+a) = A3 (c-a)= A?
Hence, the corresponding integer solutions of (1) are
X(A) = 1(A3 +A?+2)
2
y(A) = %(A?’ +A*-2)

z(A) =%(A‘°’ ~A*+2)

W(A) = %(AS ~A2-2)

t(A) = A
Properties:
. X(A) + y(A) = 2P
. X(A) + Y(A) + z(A) + W(A) —t(A) =SOp
. X(A) =cta A

Each of the following expressions represents a Nasty number.

2) 6{y(A) -w(A)}
b) 6{x(A) - z(A)}
o 3{X(A) +y(A) - z(A) - w(A)}

Each of the following expressions represents a Cubical integer.

. y(A) +z(A)
. X(A) +w(A)
Case: iii

Let (C+a)=A° (c-a)=1
Hence, the corresponding solutions of (1) are

X(A) = %(A5 +3)
Y(A) = (A% -

Z(A) =%(A5 +1)

1
2
t(A) = A

W(A) = = (A° -3)

As our aim is on finding integer solutions, it is seen that the values of
x,y,z,w and t are integers only when A is odd. ie A = 2K +1.Thus,
the corresponding solutions of (1) are

x(K) =16k > + 40k * + 40k + 20k ® + 5k + 2
x(k) =16k> + 40k * + 40k 3 + 20k ? + 5k
x(k) =16k> + 40k * + 40k 3 + 20k 2 + 5k +1
x(k) =16k> + 40k * + 40k 3 + 20k? + 5k -1
t(k) = 2k +1
Properties:
. X(A) — Y(A) + 2(A) + W(A) +t(A) = 4(mod A)
. X(A) — y(A) + W(A) — z(A) =0
Each of the following expressions represents a Nasty number.

2 6(x(A)-y(A)}
b) 6{x(A) - y(A) +z(A) - w(A)}

o 2dX(A)-Y(A)—2z(A)—W(A) is a cubical integer.
o 16{X(A) + y(A) + W(A) + z(A)} is a quintic integer.
PATTERN II:

Introduction of another transformations

X=U+V W=u-V
t =ku
y=u+p Z=u-p
in (1) leads to Ve = p2 +kou? ©)
Case: i

Let (V+ p)=k>A* (v—p)=1

Hence, the corresponding solutions of (1) are

X(A) = %(2A+ k°A% +1)

y(A) = %(2A+ koA% -1

Z(A) = %(ZA— kOA% +1)

W(A) = %(ZA— k°A% 1)

t(A) = kA
The quintuple (x,y,z,w,t) is an integer, when both A and k are odd.
Case: ii

Let (V+p) =k°A3 (v—p)=A

Hence, the corresponding solutions of (1) are
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x(A):%(3A+k5A3)

y(A) =%(A+ k> A3)

z(A)=%(3A—k5A3)

W(A) = %(A— k°A%)
t(A) = kA
The quintuple (x,y,z,w,t) is an integer, when both A and k are odd.
Case: iii
consider (V+ p) =k°A%  (v—p) = A?
Hence, the corresponding solutions of (1) are
X(A) = %(2A+ A?(k° +1))

y(A) = %(2A+ A?(k° -1))

Z(A) = %(2A+ AZ(1-k®))

W(A) = %(ZA— A?(k° +1))
t(A) = kA

The quintuple (x,y,z,w,t) is an integer, when k is odd.
Case: iv

_ A4 S
Take (V+ p)=A" (v—p)=Kk

Hence, the corresponding solutions of (1) are
X(A) =%(2A+ A% +k)

y(A) =%(2A+ A% —k®)
Z(A) =%(2A— A% +k°)
W(A) =%(2A—A4 ~k%)
t(A) = kA

The values of x,y,z,w and t are integers ,when both A and k are of the
same parity.

Case: v

Assume (V+ p)=k3AZ  (v-p)=k?A?

Thus, the corresponding solutions of (1) are

X(A) =%(2A+ AZ (k3 +k?))
y(A) =%(2A+ AZ(k3 -k?))

Z(A) =%(2A+ AZ(k? k%))

W(A):%(ZA—AZ(k3+k2))
t(A) = kA

The values of x,y,z,w and t) are integer ,when A is even.
PATTERN I1I:

When k # a perfect square

(3) is of the form 22 =Dx% + y2

Hence the solutions of (3) is

u2:2rs
v:k‘r’r2 +s2
p=k5r2 —32

Our interest is on finding integer solutions, so take I' = 2 2a _18 .

Hence, the corresponding nonzero distinct integral solutions of (1) are
given by

x=2%s+ (k22472 1 1)s?
y=2%s+ (k2242 _1)s?
z=2%5— (k242 _1)s2
w=2%s— (k2242 4 1)s?
t=k2%s

If k = o2 , (3) leads to v2

= p? +(a’u?)? )

which is satisfied by

a’u? = 2rs
v:r2+32,r>s>0 (5)
p=r2—32

Let as assume that ' = 22ﬂ_1a5R28

Then (5) becomes

u —2p Rs
D= (24ﬂ—2a10R4 _1)32

v=(2%"2410R% ;152
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Hence the corresponding solutions of (1) is

x = 2P Rs + (24#72 ¢ 1OR* +1)s2
y =2PRs+ (240-2510R% _1)s?
z=2PRs - (24F~210R* _1)52
w=2PRs— (24824 10R* 11)s?
t=a22PRs

Also, the solutions of (4) are

a’u? =r? —g2
v=r?+s?
p=2rs

Let r=a’R,s=a’S
Then (6) becomesU® = ® (R* = S?) ©)
Again taking R = (xsﬁ, S=0a°S in (7), it leads to

u=a™R -5

Consider R=M? +N?2,S = 2MN

Then

u=a’(M?*-N?)

v=a*(M*+N*+6N°+M?)

p =4 MN(M? +N?)

Thus the corresponding solutions of (1) are
x=a'(M2=-N?)+a**(M*+N*+6N? +M?)
y=a'(M?=N?)+4a3MN(M? + N?)
z=a'(M? =N?)-4a3'MN(M? + N?)
w=a'(M?-N?) a3 M*+N*+6N%2 +M?)
t=a’(M2-N?)

REMARKABLE OBSERVATIONS

Employing the solutions (X, VY, Z,W, t) of (1), a few observations

among the special polygonal and pyramidal numbers are exhibited
below

3 3 3 3
P3 p5 4 5
1|3Pe | | 5 + 6. —3{ 12p, } 4 = 0(mod 6)
t3,x—2 t3,y t3,2w-2 S, -1

3 3 3
2.|:t3,2x1:| B 3(p371 - pi—l) N {36 pfvfz } 6 4Pt5
gnx t3'y,2 Swfl -1

is a cubical integer.

3 3 3 P s P 4

P P P
3.36{M} — 6% =2 | +36] — —6Y
Swa -1 3,2-2 t6,x+1 t3,2y—2

is a quintic integer
Conclusion

To conclude, one may search for other patterns of solutions and their
corresponding properties.
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