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ARTICLE INFO                                         ABSTRACT 
 
 
 
 
 

In this paper, we present many new fourth -order optimal families of Ostrowski's method for computing zeros of 
system of nonlinear equations numerically. In this paper, we extending the idea of the proposed families of 
Ostrowski's method to system of nonlinear equations .It is proved that the above said families have fourth order of 
convergence. Several numerical examples are also given to illustrate the efficiency and the performance of the 
presented families. 
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INTRODUCTION 
 
Due to the fact that systems of nonlinear equations arise frequently in science and engineering they have attracted researcher's interest. For 
example, nonlinear systems of equations, after the necessary processing step of implicit discretization, are solved by finding the solutions of 
systems of equations. We consider here the problem of finding a real zero, x*= (x*1, x*2…….; x*n)T,  of a system of non linear equations 

f1(x1, x2, ...…….., xn) = 0; 
f2(x1, x2,  ...…….., xn) = 0; 
::::::::::::::::::::::::::::::::::::::; 
::::::::::::::::::::::::::::::::::::::; 
fn(x1, x2, ……….., xn) = 0; 

 
This system can referred in vector form by 
 

                    F(X) = 0                                                                                                                                                      (1.1)                   
                                                      
Where F = (f1, f2, ………, fn)T and  X = (x1, x2,.……..,xn)T 

 
Let the mapping F: D  Rn →Rn assumed to satisfy the assumptions (1.1). F(X) is continuously differentiable in an open neighborhood D of X*. 
There exists a solution vector X* of (1.1) in D such that F(X*) = 0 and F’(X*) ≠ 0. Then the standard method for finding the solution to equation 
(1.1) is the classical Newton's method [2-5] given by 
 
Xk+1 = Xk -F(Xk)/F’(Xk),  k = 0, 1, 2,                                                                                                           ………….. (1.2)  
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[10] Now extend this idea for system of equations, we have 
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COVNERGENCE ANALYSES 
 
We shall present the mathematical proof for the order of convergence of formula                                                       (1.2). 
 
Lemma 1: Let D⊆ Rn →Rn be P-times Frechet differentiable in a convex set D⊆ Rn then for any X, H ࣕ Rn,  the following expression holds: 
F(X+H) = F(X) + F’(X) H+1/2!   F’’(X) H2  + 1/3! F’’’(X) H3+……+1/(p - 1)!Fp-1(X)Hp-1+Rp.                                  (3.1) 
Where 
 
   ||Rp|| ≤ 1/p! sup ||Fp(X + tH)||||H||p,   
 
                        0 ≤ t ≤ 1 
and Hp = (h, h, ………p, ….., h).  
Now we analyze the behavior of (1.2 ) through the following theorem: 
 
Theorem 3.1. Let D⊆ Rn →Rn be four times Frecht differentiable in a convex set D containing the root r of F(x) = 0. Then, the sequence xk, k ≤ 
0 (x0 ࣕ D) obtained by using the iterative expression of method (2.10) converges to r with convergence order four if b4 ≠0 and b4 ≠ b5. 
Proof: The Taylor’s expansion (3.1) for F(x) about xk is 
 
F(x) = F(xk) + F’(xk) (x-xk) + 1/2! F’’(xk) (x-xk) 2 + 1/3! F’’’(xk)(x- xk)3 +1/4! Fiv(xk)(x- xk)4+ O(||x-xk||5).                  (3.2) 
Let ek = xk - r. Then, setting x = r and using F(r) = 0 in (3.2), we obtain 
 
 F(xk) = F’(xk)ek -1/2! F’’(xk)(ek)2 +1/3! F’’’(xk)(ek)3 -1/4! Fiv(xk) (ek)4 + O(||ek||5).                                                       (3.3) 
Pre-multiplying by F’(xk)-1 to both sides of (3.3) 
F’(xk)-1F(xk) = ek – 1/2! F’(xk)-1F’’(xk)(ek)2  +1/3! F’(xk)-1F’’’(xk)(ek)3   -1/4! F’(xk)-1 Fiv(xk) (ek)4+O(||ek||5).               (3.4) 
 
Now from (2.10), we yields 
 
yk - xk = - ek +1/2! F’(xk)-1F’’(xk)(ek)2  -1/6 F’(xk)-1F’’’(xk)(ek)3 + (||(ek)||)4.                                                                   (3.5) 
 
Also, 
 
(yk - xk)2 = (ek)2 – F’(xk)-1F’’(xk)(ek)3 + (||(ek)||)4,                                                                                                             (3.6) 
(yk - xk)3  = -(ek)3 + (||(ek)||)4,                                                                                                                                             (3.7) 
(yk - xk)4 = (||(ek)||)4.                                                                                                                                                           (3.8) 
Here em = (e, e, ……m, …..,  e), e ࣕ Rn. 
 
Taylor's expansion of F(yk) about xk is. 
 
F(yk) = F(xk)+F’(xk)(yk-xk)  +1/2!F’’(xk)(yk-xk)2 +1/3! F’’’(xk)(yk- xk)3 +  O(||yk-xk||4).                                                   (3.9) 
From (3.5)-(3.8) and (3.9), we obtain 
F(yk) = F(xk)-F’(xk) ek + F’’(xk)(ek)2-[1/3F’’’(xk)+1/2F’’(xk)F’(xk)-1F’’(xk)(ek)3]+O(||ek||4).                                            (3.10) 
Now from  (2.10) 
 
 ek+1 = ek      – F’(xk)-1   

                       

F(xk )[
[൫ర

మାర್ఱିఱ
మ൯ி൫ଢ଼ౡ൯ିర(రିఱ)ி൫ଡ଼ౡ൯]

(రி൫ଡ଼ౡ൯ିఱி൫ଢ଼ౡ൯)((ଶరିఱ)ி൫ଢ଼ౡ൯ି(రିఱ)ி൫ଡ଼ౡ൯
]F(xk) 

 
Let  R(xk) = F’(xk)-1  F(xk )) 
 
 [൫ܾସ

ଶ + ܾସܾହ − ܾହ
ଶ൯ܨ൫Y୩൯ − ܾସ(ܾସ − ܾହ)ܨ൫X୩൯]்F(X୩) and  w(xk) = (ܾସܨ൫X୩൯− ܾହܨ൫Y୩൯)்((2 ସܾ − ܾହ)ܨ൫Y୩൯− (ܾସ−ܾହ)ܨ൫X୩൯) 

R(xk) = (b4(b5 - b4)(F’(xk))TF’(xk)(ek)3 + [(3/2b5
2- 2b4b5 –b4

2)(F’’(xk))TF’(xk)+1/2 (b42 - b4b5)(F’(xk))TF’(xk)  
+1/2b4(b4 -  b5) F’(xk)-1F’’(xk)(F’(xk))TF’(xk)](ek)4 +O(||ek||5) w(xk) = b4(b5 - b4)(F’(xk))TF’(xk)(ek)2 + [1/2 (3b4 - 2b5)b4(F’(xk))TF’’(xk) 
-(b4 + b5)(b4 - b5)(F’’(xk))TF’(xk)](ek)3+ O(||ek||4).                                                                                                              (3.12) 
 
From (3.11) and (3.12), we obtain 
 
w(xk)ek - R(xk) = [1/2 (5b4

2 - 3b4b5)(F’(xk))TF’’(xk)+(2b4
2 – (5/2)b5

2 +2b4b5)(F’’(xk))TF’(xk) - 1/2(b4
2- b4b5)F’(xk)-1F’’(xk)(F’(xk))TF’(xk)](ek)4 

+O(||ek||5).                                                                                                                                                                             (3.13) 
From(2.10) and (3.13), we have 
w(xk) ek+1 = w(xk) ek - R(xk)  = [1/2 (5b4

2 - 3b4b5)(F’(xk))TF’’(xk) +(2 b4
2 -5/2b5

2 +2b4b5) (F’’(xk))TF’(xk) -1/2(b4
2 - b4b5)F’(xk)-

1F’’(xk)(F’(xk))TF’(xk)] (ek)4  + O(||ek||5).                                                                                                                              (3.14) 
 
From the above equation it is clear that (2.10) is fourth order convergence if  b4 ≠ 0 and b4 ≠ b5. 
 
Special cases of formula (2.10):   
(a)  For b4 = 10 and b5 = 1, family (2.10) read as: 
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                                                                                                   (3.15) 

 
This is a new fourth-order method and satisfies the following error equation 
 
w(xk) ek+1  = [235  (F’(xk))TF’’(xk) +(435/2) (F’’(xk))T      F’(xk)  - 45F’(xk)-1F’’(xk)(F’(xk))TF’(xk)] (ek)4  +  O(||ek||5).    
(b) For b4 = 1 and b5 = -1 , family (2.10) read as: 
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                                                                                                                           (3.16) 

 
This is a new fourth-order method and satisfies the following error equation 
 
w(xk) ek+1  = [4 (F’(xk))TF’’(xk) +(5/2) F’’(xk))T      F’(xk)  -2F’(xk)-1F’’(xk)(F’(xk))TF’(xk)] (ek)4    +  O(||ek||5).    
   
NUMERICAL RESULTS 
 
In this section, we shall check the performance of the present formula b1(3:15) and b2(3:16)  
the comparison is carried out with Newton's method and with HM and CM [8].  A mat lab program has been written to implement these 
methods. We use the following stopping criteria for computer programs: 
 
1. ࣕ = e-10. 
2. |F(Xn)|< ࣕ 
For every method, we analyze the number of iterations needed to converge to the required solution. The numerical results are reported in the  
Table 1. 
 
Table 1.  Numerical results of problems (a) to (g) using different methods 
 

F(X)  X NM HM CM b1 b2 
(a) (3,2)T  10 7 6 3 3 
 (1.6, 0)T  9 7 6 3 3 
(b) (.7,1.3)T  9 6 5 3 3 
 (-1,-2)T  9 6 5 3 3 
(c) (0.91, -2)T  9 7 6 3 3 
 (1.8, - 2.1)T  9 6 5 3 3 
(d) (.7, .9)T  9 6 5 4 4 
 (-0.1, 0.2)T  9 6 6 3 3 
(e) (.99, .1)T  9 7 6 4 4 
 (1.9, 1.4)T  9 7 5 4 4 
(f) (1.5, 2)T  10 7 6 3 3 
 (.3, .5)T  9 6 5 3 3 
(g) (.2, .6,1.5)T 9 6 5 4 4 
 (3, .5, 2)T 9 6 5 3 3 
 
We consider the following problems for a system of nonlinear equations. 
Problem (a) 
                            x1

2 – 2 x1 – x2  + 0.5 = 0 
                                    x1

2 +  4 x2
2  - 4 = 0                       

Problem (b) 
                                         x1

2 + x2
2

  -1 = 0 
                                    x1

2 -  x2
2  + 0.5 = 0                       

 
Problem (c 
                                    x1

2 – x2
2  +3log(x1) = 0 

                                  2x1
2 – x1 x2 - 5x1 + 1 = 0                       

Problem (d)  
                                   ex1 + x1 x2 – x2   - 0.5 = 0 
                                sin(x1 x2) + x1 + x2

  - 1 = 0                       
Problem (e) 
                                                 x1

 + 2 x2 – 3 = 0 
                                               2x1

2 +  x2
2  - 5 = 0          
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Problem (f) 
                                            x1 + ex

2 – cos(x2) = 0 
                                            3x1 - x2  - sin(x2) = 0 
Problem (g) 
                                               x1

2 + x2
2  + x3

2– 9 = 0 
                                                          x1 x2 x3  - 1= 0 
                                                        x1 + x2 – x3

2 =    Solution (a)  
 
r = (1.9006767263670658, 0.31121856541929427)T Solution (b)  
 
r = (0.500000000000000000, 0.8660254378443865)T r = (-0.5000000000000000, -0.8660254378443865)T Solution (c)  
 
r = (1.3192058033298924,-1.6035565551874148)T Solution (d)  
 
r = (0, 1)T Solution (e) 
 
r = (1.4880338717125849, 0.75598306414370757)TSolution (f) r = (0, 0)T  Solution (g)  
 
r = (2.2242448288477843, 0.28388497407293814, 1.58370776128252723)T 

 

r = (0.28388497407293814, 2.2242448288477843, 1.58370776128252723)T 

 

Conclusions 
 
The presented formula (3.15),(3.16) and (3.17) is simple to understand, easy to program and has the fourth order of convergence. We contribute 
to the development of iteration processes and propose several families of Ostrowski's method. We now obtain a wide general class of 
Ostrowski's families which are without memory and have the same scaling factor of function as that Ostrowski's method. Numerical tests have 
been performed,which not only illustrate the method practically but also serve to check the validity of theoretical results we have derived. The 
performance is compared with Newton method, CM [8] and HM [8].  
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