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Monitoring and controlling the hypnosis and arterial pressure during a surgery isredly vital sincein
excess of dosing and below dosing can be hazardous for the patients. Anesthesia drugs have impact on
multiple results of an anesthesia patient. Automation of anesthesia is very useful as it will provide
more time and flexibility to anesthesiologists to focus on critica issues that may arise during the
surgery. Furthermore patient safety and cost reduction. Anesthetics are administered to regulate
hypnosis and analgesia, respectively in the patient during the surgery. Most distinctive measures
include Bispectral index (BIS), mean arterial pressure (MAP) and in general, BIS and MAP as the
indirect measurements of hypnosis and analgesia, respectively. Isoflurane is given as the input to the
Pharmocokinetic-pharmacodynamic model (PK-PD), from the model BIS and MAP were taken as
output. In this work, a neural network based internal model controller (NN-IMC) is proposed by
regulating the level of hypnosis and pressure. Performance of proposed approach is evaluated with
conventional Proportional-Integral (Pl) controller. Simulation results show that proposed NN-IMC
outperforms conventional PI controller.

Copyright © Vinoth, et al., This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The word anesthesia originates from the Greek word
"aesthesia’, which is found from the literatures and it means
ability to sense and the prefix "an" for negation. Therefore, it
means no ability to sense or a state of being unable to feel
anything. Anesthesia can be defined as the lack of reaction and
recall to noxious stimuli (Kaplan, 2002). The main goals of the
anesthetist during general anesthesia are to provide hypnosis,
analgesia, skeletal muscle relaxation and also to maintain the
essential functions of the patient. Hypnosis illustrates a state of
anesthesia which is not only related to unconsciousness of the
patient but also to the disability of the patient to recall. The
disahility to recall is meticulously important as an awakening
patient, might not feel pain and be aware of the operation
procedures but cannot "converse" this to the medical team.
The anesthesiologist must guarantee hypnosis and analgesia.
Hypnosis, referred to as depth of anesthesia, is a general term
specifying unconsciousness and absence of postoperative
recall of events. Analgesia explains the disability of the patient
to recognize pain. Pain cannot be directly measured. Clinically
arterial blood pressure is often employed as an indirect sign of
the pain (Bailey et al., 2005). Generally, anesthesiologists use
BIS (level of hypnosis, adimensionless number) and MAP as
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the indirect measurements of hypnosis and analgesia,
respectively. During the surgery MAP should be observed and
retained within the desired ranges. The MAP is maintained by
the anesthesiologist by periodically infusing anesthetic drugs
(Simpson and Popat, 2002).

Hypnosis is provided by management of hypnotic agents,
which is an inhalable drug like Isoflurane (Gentilini et al.,
2001). Isoflurane induce a decrease in MAP when
administered to healthy subjects. Hence, Isoflurane gas is
widely used in the anesthesia process. Automation of
anesthesia is greatly helpful as it will provide additional time
and flexibility to anesthesiologists to spotlight on significant
issues that may occur for the duration of the surgery.
Automation of drug delivery avoids both over dosages and
under dosages. Moreover the drug delivery is based on the
patient’s response. This leads to minimum drug consumption,
less intra operative awareness and shorter healing times,
thereby decreasing the expenditure of surgery and aso the
expenditure of postoperative care. On the whole, this improves
the patient’s rehabilitation and safety during and after the
surgery (Absalom et al., 2002). Earlier modeling, diagnosis,
and controlling anesthesia focus on a single drug single output
(Sartori et al., 2005), (Eisenach, 1999), (Furutani et al., 2005)
and (Linkens, 1992). For a complete anesthesia management,
it becomes essential that the impact of anesthesia drugs on
multiple outcomes be taken into consideration. A various
model and control strategies have are done for automation of
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anesthesia (Gopinath, et al., 1995), (Rao, et al., 2001), (Zwart,
et al., 1972) & (Simanski et al., 2008). (Gentilini et al., ab,
(2001)). [15] proposed a model for the control of MAP and
BIS with Isoflurane. In this work, a five compartment model is
proposed, which allows the simultaneous regulation of MAP
as well as BIS. The proposed pharmacokinetics
pharmacodynamics (PK-PD) model has features as follows;
PK which describes the uptake and distribution of the drugs,
PD which is concerned with the effect of the drugs on the vital
functions. The Isoflurane drug simultaneously controls the
MAP and BIS. The paper is organized as follows: in section 2,
review of PK-PD model is presented. Section 3 will review the
control algorithm of NN-IMC, the result of the simulations is
proposed in the subsequent sections and the conclusions are
presented.

Mathematical modeling in anesthesia

The PK model is described by one central compartment and
one or more peripheral compartments, which are linked to the
central compartment. The PD model is described by an
additional dynamic compartment, the effect site compartment
and a static dose effect. The five compartment model, which is
represented in this work as ‘i’(where ‘i’ takes the value in the
range of 2 to 5) comprising of Lungs, Liver, Muscles, other
organs and fat tissues shown in Figure 1 (Sreenivas, et al.
(2008)).
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Figure.l. PK-PD Compartment model

The breathing system is approximated as a well-stirred tank
(Gentilin et al., 2001). The relation between inspired
anesthetic drug concentration Cing (9/mL) to the fresh
anesthetic gas concentration C;, (vol. g/mL) and parameters of
the breathing system are given by the following equation

dinsp _ (Qincin - (Qin - AQ)Cinsp - fR(VT - A)) (1)
dt v

Cout is the concentration of isoflurane in the outlet stream
(g/mL), Qi is the inlet flow rate (mL/min), AQ are the losses
(mL/min), V is the volume of the respiratory system (mL), fr
is the respiratory frequency (min), V is the tidal volume
(mL) and A is the physiological dead space (mL).

Phar macokinetic model

The PK model for distribution of drug is described by a mass
balance between the five compartments which are attached to

the centra compartment. The resulting mass baance for
isoflurane in the central compartment is given in eguation 2.

5
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Where C; is the concentration of the drug in compartment i
(g/mL), R; is the partition coefficient between blood and
tissues in compartment i, Q; is the blood flow in compartment i
(mL/min). Elimination of isoflurane by exhaation and
metabolism in liver, the 2™ compartment, is given by (3)

dc @
_2—%((:] il i
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Where ky is the rate of elimination of isoflurane in the 2™
compartment (min™).

For al the remaining compartments (except second
compartment), the corresponding mass balance is given by (4)
for i takes value from 3 to 5. C; is the concentration of i"
compartment (g/ml).

Phar macodynamic model

A PD moddl is required to relate the consequence of drug on
the hypnotic level (BIS) and Analgesia (MAP). The PK model
is attached to an effect-site compartment model which signifies
the time lag between the delivery of drug and its effect on BIS
which is given by the nonlinear Hill equation (Beck, et al.,
2007). The effect-site compartment accounts for the
equilibration time between end tidal concentration and
concentration of drug in the central nervous system. The
effect-site concentration and end tidal concentration are related
by afirst-order lag given by (5)

dc,
dt

= keﬁ(cl - Ce) (5)

Where C. is the concentration of isoflurane in the effect
compartment (g/mL), and kg is the equilibration constant
(min'%).

The action of isoflurane on BIS (Sreenivas, et al. (2008)) can
be expressed as follows

Y

ABIS = ABISMAxm (6)
ABIS = BIS — BIS, 7
ABISMAX = BISMAX - BISO (8)

Where ECs is the concentration of drug at half-maximal effect
and represents the patient’s sensitivity to the drug, and y is a
dimensionless parameter that determines the degree of
nonlinearity. BIS has the range between 0 and 100, where BIS,
= 100 denotes a fully conscious state and BISyax = O denotes
deep coma. By substituting equations (6) and (7) into equation
(),
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The nominal values of the parameters ke = 0.3853 min-1, Ecs
=0.7478 vol. % and y = 1.534 are taken from (Sreenivas, Y et
al. (2008)).

The action of isoflurane on MAP (Pinky Dua.,, et al., 2005) can
be expressed as follows

Q1
i, (gi.ﬂ a+ biCi))

MAP = (10)

Where, g are the baseline conductivities (mL/(min mmHg))
and b; are the variation coefficients of conductivity (mL/g).
The nominal values of the parameters used in this model are
referred from (Pinky Dua, et al., 2005). These parameter
values are based upon the values reported in the literature for
the various organs, within a compartment.

Neural Network based IMC

The way in which the neurons of a neural network are
organised is intimately linked with the learning algorithm used
to train the network. Learning algorithm used in the design of
the neural networks as being structured. Feed forward neural
network distinguishes itself by the presence of one or more
hidden layers whose computation nodes are correspondingly
called hidden neurons. The function of the hidden neuronsisto
intervene between the external inputs and the network output
in some useful manner. Artificial neural networks (ANN) are
trained by adjusting these input weights, so that the calculated
outputs may be approximated by the desired values. The
output from a given neuron is calculated by applying atransfer
function to a weighted summation of its input to give an
output, which can serve as input to other neurons as follows.

e Tk = Nk i(k—1j+5jk/ an

The model fitting parameters wi are the connection weights.
The nonlinear activation transfer functions F,. The training
process requires a proper set of datai.e., input (I;) and target
output (t;). During training the weights and biases of the
network are iteratively adjusted to minimize the network
performance function. The typical performance function that is
used for training feed forward neural networks is the network
Mean Squares Errors (M SE).

(12)

There are many different types of neural networks, differing by
their network topology and/or learning algorithm. In this paper
the back propagation learning algorithm, which is a multilayer
feed forward network with hidden layers between the input
and output. The simplest implementation of back propagation
learning is the network weights and biases updates in the
direction of the negative gradient that the performance
function decreases most rapidly. An iteration of this algorithm
can be written as follows.

1

k+1 "k k% (13)
There are various back propagation algorithms such as Scaled
Conjugate Gradient (SCG), Levenberg-Marquardt (LM) and
Resilient back Propagation (RP). Among these LM is the
fastest training algorithm for networks (Narendra and
Parthasarathy, 1990) of moderate size and it has the memory

reduction feature to be used when the training set is large.
Generation of Input-Output data

By changing the infusion rate as random number sequence is
given as input to the PK-PD as shown in Figure 2 and the
corresponding output is obtained as shown in Figure 3,4 The
identification data set, containing N = 1000 samples with
sampling time of 15 sec.
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Figure 2. Random input to PK-PD model
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Figure4. MAP response of PK-PD model

Forward Neural M odel of PK-PD model

The neural network approach is trained to represent the
forward dynamics of the PK-PD model. The network is trained
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using delayed outputs and current input. The Activation
function for the hidden layer is tansigmoidal, while for the
output layer linear function is selected and they are bipolar in
nature. The block diagram of forward neural network model is
shown in Figure 5. The Levenberg Marquardt (LM) learning
algorithm (Narendra and Parthasarathy, 1990) (Sivaraman and
Arulselvi, 2011) does the correct choice of the weight.

ulk)

y Plant BISK)
7 -3
./' z '| .
Fororand memral k)
model 4
LM Algorithm

Figure 5. Block diagram of forward neural model
Training and M odel validation of forward Neural M odel

The data set used for training is sufficiently rich to ensure the
stable operation, since no additional learning takes place after
training. During training the NN learns the forward of the PK-
PD dynamics by fitting the input-output data pairs. This is
achieved by using the LM algorithm. The simulated forward
model output is shown in Figure 6, 7. It is observed from
Figure 6, 7 that forward model output exactly matches with
output of the actual process. Hence, the neural network has the
ability to model forward dynamics of the PK-PD model, which
can be used for developing the model based controllers.
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Figure.7. Response of forward neural model and Actual MAP
output

Direct Inverse Neural Model of PK-PD model

The neural network approach is also trained to capture the
inverse dynamics of the PK-PD model,. The network istrained
using delayed sample of outputs and delayed input of PK-PD
model. The Activation function for hidden layer and output
layer are bipolar tansigmoidal and bipolar pure linear are used
to give the desired output as BIS and MAP, which is input
signal for the PK-PD model. The block diagram of direct
inverse neural model is shown in Figure 8.

u(k) BIS(k)
PLANT

Inverse neural model

/

Figure 8. Block diagram of direct inverse neural model

(k)

LM algorithm

Training and model validation of inverse neural model

During training the NN learns the inverse of the PK-PD model,
by fitting the input-output data pairs. Thisis achieved by using
the LM algorithm. It is clear from Figure.9 that the inverse
model output exactly matches with input of the actual model.
Hence the neural network has the ability to model inverse BIS
and MAP, which can be used for developing model-based
controllers.
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Figure 9. Response of inverse neural model and actual input of
the model

Design of Direct Inverse Neuro Controller for PK-PD
model

In the direct inverse control technique, the inverse model acts
as the controller in cascade with the system under control,
without any feedback. In this case the neural network, acting
as the controller. In this control scheme the desired setpoint
acts as the desired output which is fed to the network together
with the past plant inputs and outputs to predict the desired
current plant input. The direct inverse neura controller is
shown in Figure.10.
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Figure 10. Block diagram of inverse neural model

Design of Neural Internal Model Controller

The Internal Model Control (IMC) philosophy relies on the
Internal Model Principle, which states that control can be
achieved only if the control system encapsulates, either
implicitly or explicitly, some representation of the process to
be controlled. In particular, if the control scheme has been
developed based on an exact model of the process, then perfect
control is theoretically possible. In practice, however, process-
model mismatch is common; the process model may not be
invertible and the system is often affected by unknown
disturbances. The open loop control arrangement will not be
able to maintain output at set point. Nevertheless, it forms the
basis for the development of a control strategy that has the
potential to achieve perfect control. This strategy is called as
Internal Model Control. The neural internal model control
approach (Hunt et al., 1992) is similar to the direct inverse
control approach above except for two additions. First is the
addition of the forward model placed in parallel with the plant,
to cater for plant or model mismatches and second is that the
error between the plant output and the neural net forward
model is subtracted from the set point before being fed into the
inverse model. The other data fed to the inverse modd is
similar to the direct method. A filter can be introduced prior to
the controller in this approach to incorporate robustness in the
feedback system, especially where it is difficult to get exact
inverse models. The neural internal model controller is shown
in Figure 11.

Figure 11. Block diagram of internal model control

SIMULATION RESULTS AND DISCUSSIONS

The nominal input range of BISisin the range 0 to 5% volume
of isoflurane, the BIS range for the anesthetic state is of the

range 40 to 65 and the range of MAP is between 60 to 150
mmHg. Open loop simulation of the model was done to
observe the effect of isoflurane on MAP and BIS. Figure 12,
13 shows the open loop response of the PK-PD model.
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Figure 12. Open loop response of BIS
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Figure 13. Open loop response of MAP.

From the output it can be observed that BIS requires long
duration to attain the steady state. With the step change of
0.8% volume of isoflurane leads to the nominal value of BISis
49 and MAP is 74 mmHg. Figure 14, 15 shows the closed loop
response of PK-PD model with Pl controller implemented by
pole placement method.
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Figure 14.Closed loop response of BIS by PI controller
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Figure 15. Closed loop response of MAP by PI controller



3138

Vinoth, N. et al. Performance analysis of neural network based control of hypnosis and analgesia during anesthesia by employing

a pharmacokinetic-pharmacodynamic model

Figure 16, 17 shows the response of NN-IMC controller which
seems to have faster settling time than that of Pl controller,
from this it can be concluded that amount of drug
administrated in NN-IMC is less than the Pl controller. By
comparing Pl and NN-IMC, from the PI controller output it is
observed that it has over shoot and under shoot which is
undesirable in surgical environment, which is not observed in
NN-IMC. The performance criteria of Pl and NN-IMC are
measured using ISE and | AE are tabulated in Table 1.
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Figure 16. Closed loop response of BIS by NN-IM C controller
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Figure 17. Closed loop response of MAP by NN-IM C controller

Table 1. perfor mance measures of Pl and NN-IMC

CONTROLLER ISE(MAP) IAE(MAP) ISE(BIS) IAE(BIS)
Pl CONTROLLER  9.63x10* 3103 2424 112
NN-IMC 5.151x10* 716 653 45
CONTROLLER

From the Table 1 it is observed that NN-IMC’s ISE and IAE
are lesser value than Pl controller. From the above
observations it is seen that NN-IMC outperforms the Pl
controller.

Conclusion

Automatic regulation of anesthesia can provide tighter control
allowing anesthesiologist to focus on more critical issues
which will result in less time spent by the patients in the post-
operative care unit, reduction in the amount of drugs used and
side-effects and above all a much safer platform for surgery
under anesthesia. A compartmental model for anesthesia based
upon the infusion of drugs for the simultaneous regulation of
MAP and BIS of the patient has been presented. From the
resultsit can be inferred that NN-IMC controller has enhanced
performance on BIS and MAP simultaneously. During surgery
the presence of noise and disturbances are inevitable,
automation leads to controlling the BIS and MAP.
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