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ARTICLE INFO                                   ABSTRACT 
 

 

In the first stage of analysis, some descriptive measures were used to examine the main 
properties of the series. Twelve-month centred moving average and differencing of 
order twelve advocated by Box and Jenkins (1970) were used to reduce the seasonal 
effect and to make the series stationary respectively. The autocorrelation of the 
differenced series of the productions were calculated including the partial 
autocorrelation with their respective correlogram which gives an insight into the 
probability model that generated the series.The second stage involves fitting of model 
and diagnostic checking to test for the adequacy of the fitted model. The diagnostic 
checking revealed that autoregressive model of order two was fitted into the series. 
 
 

 
 

INTRODUCTION 
 

Time Series analysis is an effective tool that can be used 
to achieve production goals in any Organization. It can be 
used to make short and long time decisions even more 
importantly for long time planning and forecasting the 
future tendency. 
     Most economic data are measured over time. A time 
series, therefore, ‘‘is a collection of observations made 
sequentially over time’’. In the economic sector, we 
observe share prices on successive days, export totals in 
successive months, average incomes, and company profits 
in successive years, and so on. In Agriculture, we 
observed annual rain-fall, production and profit and so on. 
In engineering we observed sound, electric signals and 
voltage. In Geophysics, we observe turbulence such as 
ocean waves and earth noise in an area. We can also 
monitor a process according to a certain target value.  
      Time series such as the measurement of sound, electric 
signals and voltage which can be measured and recorded 
continually in time is said to be a continuous time series. 
When observations are taken only at a specific time 
usually equally spaced even when the measured variable 
is continuous, series of this type is said to be discrete. In 
addition, time series can be stochastic or deterministic. A 
stochastic process can be described as a random element 
in their structure. A stochastic process can be described as 
a statistical phenomenon that evolves in time according to 
probabilistic laws. That is future values can be predicted 
from past observations. Deterministic series occur only if 
the future values can be predicted by some mathematical 
functions.  
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If the future values can be described only in terms of a 
probability distributions, the series is said to be non-
deterministic or simply a statistical time series. 
      In Engineering the word ‘’spectral’’ or ‘’frequency 
domain’’ is frequent. While in Mathematical statistics, 
correlation’’ or ‘’time domain’’ is also frequent. The 
spectral properties of stationary models is the analysis of 
time series based on the assumption that it is made up of 
sine and cosine waves with different frequencies                 
(Priestly, 1981).  A device which uses this idea, first 
introduced by Schuster (1998) is the periodogram. The 
periodogram was originally used to detect and estimate 
the amplitude of a sine component of known frequency, 
buried in noise. 
     Several books have been written on time series 
analysis. Their writings were based on theoretical aspects 
of time series analysis and are mainly concerned with 
mathematical theory. Another author who made an 
immeasurable contribution to time series analysis 
literature is Box and Jenkins (1970). The book describes 
the approach of time series analysis, forecasting and 
control. It is based on a particular class of linear stochastic 
models. 
     Several Researches had been carried out involving the 
use of autoregressive integrated moving average. Among 
these is in Epidemiology, Allard. (1998) worked on the 
uses of time series analysis in infectious surveillance and 
Ernest (2005) who worked on Autoregressive Integrated 
Moving Average Model to predict and monitor the 
number of beds occupied during a SARS outbreak in 
Singapore. The essence of this research is to see its 
practicability in Manufacturing Industry such as the 
Global Soap and Detergent Ilorin, Kwara State, Nigeria. 
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MATERIALS AND MOTHODOLOGY 
 
 

The data used in this research work was collected from the 
statistics unit of the Global Soap and Detergent (Nig) 
Limited, Ilorin Factory, Ilorin Kwara State. The data was 
available on monthly basis and it covered a period of Ten 
years. There are basically two approaches to the analysis 
of discrete time series. The approach to be used depends 
on the object of the analysis. These two methods are the 
traditional and the stochastic methods. The traditional 
method concerned the decomposition of time series into 
its various components. Observations recorded over time 
are assumed to be influenced by some factors such as 
seasonal fluctuations, cyclic components, irregular, trends 
and so on. One or more of these components may be 
absent but the irregular component is always present. 
Assumptions about the combination nature of the factors 
enable us to fit suitable model to a series. Two practical 
methods; additive and multiplicative models are often 
used. 
 
 

Autoregressive Integrated Moving Average Models 
 
The general autoregressive integrated moving average 
process of order (p,d,q) denoted by 
ARIMA(pdq):  qtqttptpttt WWWW 

 ......
1111

… (6) 

 where 

 dyttW  is the differenced series and 

,...,,..,
2121  q

p
are as defined above 

 
Model Selection 
 

Three stages iterative procedure based on specification, 
estimation and diagnostic checking are used to obtain an 
appropriate model. 
 

Specification 
 

This is the use of data and any information on how the 
series was generated, to suggest a subclass of 
parsimonious models worthy to be entertained. In 
achieving this time plot autocorrelation function, 
correlogram, test for randomness or stationary and the 
main partial autocorrelation functions are used to obtain 
the main properties of the series. 
 

Autocorrelation Function 
 

The sample autocorrelation coefficients measure the 
correlation between adjacent observations at different 
distances (lag apart). These coefficients often provide 
insight into the probability model that generated the series 

the autocorrelation coefficients 
k

 at lag k is given by: 
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      = autocorrelation coefficient at lag K 
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And 

C0=  




KN

t

YY tN 1

2

)(
1  …..………………………..(9) 

= sample variance, which is equivalent to auto-covariance 
at lag zero. 
 

Partial autocorrelation function 
 

The partial autocorrelation function enables ones to know 
which order of autoregressive process to fit an observed 
time series. A recursive formula for calculating the partial 
autocorrelation is given by: 
                                                        If K=1 
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                                                         If K = 2 ,…, L 
Correlogram 
 A useful aid in interpreting a set of autocorrelation 

coefficient, 
k

, is a graph called the correlogram in 

which 
k

is plotted against the lag k. for a non-stationary 

time series, the values of 
k

will not come down to zero 

except for very large values of lag, whereas for a 

stationary time series, the values of 
k

will come down to 

zero and the model is assumes that the process remains at 
equilibrium about a constant mean level. 
 

Test for randomness and stationary 
If any time series data are completely random for large N, 


k

= 0, for all non-zero values of K, Box and Jenkins 

(1970) showed that in searching for significance of 
k

, 

the values 
k

 which lie outside the range 
N

2
  are 

certainly significantly different from zero and need further 
investigation. 
 

Parameters estimation 
The estimation of autoregressive model is described 
below: 

For a process 
k

assumed to have a non-zero mean. A 

suitable model for AR(p) is 
 

 tptpttt WWWW 


...
2211

………..(11) 

Where 

Wt = Yt – U and 
p

..,
21

a are constant 
 

Given N observations r1, r2,..,rN, the problems is to 
estimate the unknown parameters 

    
p

..,
21

 and . 

The equation can be written as 

 tptpttt WWWW 


...
2211

…………(12) 

 

There is superficial similarity between equation (12) and 
the classical multiple regression models. Wt is expressed 
as a linear function of  

WWW pttt 
..

21
 With 

p
acting as the regression 

coefficients and  t
 is the ‘’residual’’. 

Since the values r1, r2, …, rN, are all observed there is 
nothing preventing the application of least squares 
procedure used in regression analysis. The estimates 


p

..,
21

 are obtained by minimizing; 
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The summation takes values from t= p+1 because the 

terms 
22

1
,...,

p
 can not be computed in terms of the 

observed. 
 

Other methods are the use of exact likelihood function and 
the use of Yule-Walker’s equation provides estimate that 
are approximately to the least squares estimates and to the 
maximum likelihood estimate. The Yule-Walker’s 
estimates are 

),...,(,
21

1 
prR 


……………………….(14) 

 

























1

.......

1

21

2
1

1....1

rr
rr
rr

pp

p

p  and 

























r

r
r

p

r

.

.

2

1

 





N

pt
t

N

pt
t eaS

1

2

1

2
)(  ………………………….(15) 

is estimated by either forward or backward equation. 
The forward equation is given by 

at= WWWW ptpttt 
  ...

2211
  ……(16) 

And the backward equation is given by 
et WWWW ptpttt 

  ...
2211

 …………..(17) 

Where (at)’s and the (et)’s the error terms. 
Hence the initial estimate of the autoregressive process of 
order one is given by 


1

  , 
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For autoregressive process of order one, 
1

 = 0.419 

and second order autoregressive process we have  

Table1. Autocorrelation coefficients ofmonthly production 
 

Lag Autocorrelatio
n coefficients 

Lag Autocorrelation 
coefficients 

Lag Autocorrelation 
coefficients 

1 0.419 11 0.205 21 0.11 

2 0.24 12 0.211 22 0.127 

3 0.24 13 0.258 23 0.114 

4 0.251 14 0.227 24 0.061 

5 0.237 15 0.092 25 0.092 

6 0.221 16 0.084 26 0.134 

7 0.267 17 0.199 27 0.053 

8 0.268 18 0.159 28 0.046 

9 0.301 19 0.184 29 -0.106 

10 0.256 20 0.132 30 -0.046 
 

Table 2. Autocorrelation coefficients of differenced series 
 

Lag Autocorrelation 
coefficients(rk) 

La
g 

Autocorrelation 
coefficients 

La
g 

Autocorrelation 
coefficients(rk) 

1 0.191 11 -0.150 21 -0.048 

2 0.175 12 -0.250 22 0.031 

3 0.149 13 -0.030 23 0.022 

4 0.055 14 -0.102 24 0.082 

5 0.049 15 -0.097 25 0.005 

6 0.033 16 0.21 26 -0.063 

7 0.068 17 0.77 27 -0.027 

8 0.119 18 -0.026 28 -0.062 

9 0.126 19 0.073 29 -0.076 

10 0.027 20 -0.260 30 0.021 
 

Table 3. First oeder autoregressive process 
 

 

ITERATION PARAMETER( ) SSE( ) MSE( ) 

0 0.419 1.07466E+12 9.1073E+9 

1 0.519 1.08754E+12 9.4282E+9 

2 0.619 1.09233E+12 9.6354E+9 

3 0.719 1.19136E+12 9.9237E+9 

4 0.819 1.28231E+12 9.9991E+9 
 

Table 4. Second oeder autoregressive process 
 

 

ITERATION PARAMETERS(
k

) 


1

                    
2

 

SSE( ) MSE( ) 

0 0.325 0.148 1.04123E+12 8.7498E+9 

1 0.325 0.248 1.04298E+12 9.1392E+9 

-      -      -          -    - 

-      -      -          -    - 

24 0.725 0.548 1.31201E+12 9.8566E+9 
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The parameters satisfied the admissible region of 
stationary. 
 

Diagnostic Checking 
 

Box and Jenkins (1970), described a check called 
portmanteau lack-of-fit test is given by 
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  is the autocorrelation 

coefficient of the residuals obtained from the fitted model 

Q  is approximately distributed Chi-square with N-p-q 

degrees of freedom. Where (p, q) and N-p-q are number of 
orders in the AR and MA terms respectively. 
 

Mean Square Error Method 
 

After diagnostic check, the best model can be selected 
using the Mean Square Error Method (MSE). The MSE is 
computed thus: 

MSE =  
pN

S



)(
 where )(S  is the sum of squares error 

and N-p is the error degrees of freedom N is the number 
of observations and p is the number of estimated 
parameters. 
 

RESULTS AND DISCUSSION     
 

The time plot is characterised by recurring up and 
downward movement which indicates the presence of 
secular trend, irregular and seasonal variations. The 
variations is an indication of the presence of permanent 
force which operating uniformly (Figure 1). Using the 
SPSS, thirty (30) autocorrelation coefficients were 
obtained (Table1) which agrees with the general rule of 
N/4 autocorrelation values from N observations (N = 120). 
A critical look at the correlogram (Figure 2) reveals that 
the autocorrelation coefficients are significance at lags  
1, 2, …, 14 and 19. These values were outside the limit 

of 183.0/2  N . Thus indicating the presence of 

seasonal and trend effect with some irregular variations 
that cannot be identified. In order to remove the seasonal 
effect, a 12-order moving average was used. The trend of 
the 12-month moving average did not follow a particular 
pattern which may be due to the presence of irregular 
variation which has not been fully eliminated (Figure 3). 
     Consequent upon the above, a difference of order 

twelve that is ,.......,
11312 YYYY tttt 

 , was 

carried out for the purpose of obtaining a stationary 
model. The autocorrelation of the differenced series yields 
the autocorrelation coefficients in Table 2 with the 

corresponding correlogram in figure 4. The values of rk 
remain significance after the twelve order differencing. 
However, according to Chatfield (1975), one is expected 
to find at least one value of the autocorrelation of the 
differenced to be significant even when the series is 
stationary. Based on this assumption, the values of rk that 

lies outside the limits rk 183.0/2  N are due to 

irregular variations and that the series is stationary. In 
order to specify an appropriate production model, the 
partial autocorrelation coefficients of the production 
values were computed with the aid of SPSS and the values 
compared with the autocorrelation coefficients with their 
corresponding correlograms (Table3) and (Figure 5). 
Greater values of the partial autocorrelation are outside 
the boundary condition indicating irregular variations. 
This may be attributed to mixed distribution where by the 
series is neither stationary nor non-stationary (Anderson, 
1971). 
 
 Parameters Estimation 
 

Using the preliminary estimates, the parameter of the 

autoregressive model of order one was estimated as  = 

r1.=0.419 and the parameters of the second order 
autoregressive model was estimated 

148.0325.0
21
  and . The estimated 

parameters fall within the admissible region of stationary. 
Hence the first and second order autoregressive models 
are written as  

 ttt WW 
1419.0 ………………    (19) 

 And  tttt WWW 
 21

14.0325.0  ……... (20) 

 respectively  
Fitting the Autoregressive Models 
In order to fit an appropriate model, the error (residuals) 
sums of squares were obtained using a preliminary 
estimates obtained as o.419 to 0.819 in steps 0.1, five 
possible iterations were obtained and sum of squares and 
mean sum of squares error were obtained using the 
formulae 
 

WWa ttt 1
419.0


 , …, WWa ttt 1

819.0


  

for first order autoregressive model. Thus the preliminary 
estimate has the least mean squares error (MSE) (Table 4). 
Using the least squares method, the preliminary estimate 
was the best fit. Hence the model 

 ttt WW 
1419.0 … 

For the second order autoregressive model, twenty four 
possible iterations were obtained, using the 
formulae WWWa tttt 21

148.0325.0 
 , 

WWWa tttt 21
248.0325.0 

 ,…,  

WWWa tttt 21
548.0725.0 

 . Their various 

mean square errors were obtained and the preliminary 

estimates 148.0325.0
21
  and have the least 

mean squares error (Table5). 
 
 



054                     International Journal of Current Research, Vol. 7, pp.049-054, August, 2010 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Diagnostic Checking 
The portmanteau lack-of-fit test is given 

by )(
1

2

ar t

k

t
k

NQ 


 ; where N is the observation, rk(at) is 

the residual autocorrelation coefficients from the fitted 
model and Q is distributed Chi-square with N-p-q degrees 
of freedom. For the first order model 

 ttt WW 
1419.0  and the second order model 

 tttt WWW 
 21

14.0325.0  the estimated 

autocorrelation coefficients of residuals were obtained 
(Table 6) and Q1 and Q2 were computed as 34.03 and 
28.62 respectively. The tests were significant and the two 
models fit into the production process. 
However, comparing the first and second order models, 
the mean square error of second order is less than that of 
first order. That is MSE (2) = 9.107X109 < MSE (1) = 
9.341X109 (Table 4 & 5) . Hence the model 

 tttt WWW 
 21

14.0325.0  is fitted for the 

production.  
Forecasting  
The autoregressive integrated moving average suitable for 
forecasting future production is given by 
ARIMA(pdq): 

eeeWWW qtqttptptt 
  ......

111
  

Where  dyttW  is the differenced series and 

 2121
148.0,325.0 andand are to be 

estimated from the autocorrelation of residuals (Table 5) 
using the same procedures as in equation (18). The 
estimates are obtained as  
 

 093.0158.0
21
  and . The ARIMA model of 

order two suitable for forecasting future production is 
obtained as 

eeeWWW tttttt 2121
093.0148.0325.0 158.0 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

In the analysis, twelve month-centred moving average was 
considered as a way of eliminating the seasonal effect 
discovered in the series. Differenced of order twelve of 
the series was equally estimated to eliminate trends in 
order to bring the series to stationary. The autocorrelation 
and the partial-autocorrelation coefficients at lag thirty 
(30) indicated that the series is stationary. More so, two 
models that is autoregressive model of order one and two 
were fitted for the series. Autoregressive model of order 
two was considered to be more efficient as it has the least 
mean square error and is considered adequate in 
describing the mechanism that generated the series. For 
the purpose of prediction, an autoregressive integrated 
moving average of order two was fitted to the process.  
 

RECOMMENDATION 
 

For the purpose of predicting future production and 
process control, an autoregressive integrated moving 
average model of order two is therefore recommended. 
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Table 5. Autocorrelation coefficients of residuals of fitted models 
 

Lag First Order 
Autocorrelation 
Coefficients(rk) 
of Residuals 

Second Order 
Autocorrelation 
Coefficients(rk) 
of Residuals 

Lag First Order 
Autocorrelation 
Coefficients(rk) 
of Residuals 

Second Order 
Autocorrelation 
Coefficients(rk) 
of Residuals 

1 -0.077 0.013 16 -0.068 -0.094 

2 0.139 0.007 17 0.160 0.143 

3 0.024 0.004 18 0.044 0.071 

4 0.129 0.101 19 0.116 0.105 

5 0.091 0.074 20 0.032 0.027 

6 0.037 0.014 21 0.043 0.025 

7 0.020 0.096 22 0.042 0.049 

8 0.107 0.109 23 0.090 0.077 

9 0.152 0.149 24 -0.048 -0.060 

10 0.100 0.089 25 0.042 0.037 

11 0.050 0.012 26 0.116 0.122 

12 0.43 0.034 27 0.012 0.021 

13 0.200 0.212 28 0.106 0.081 

14 0.115 0.127 29 -0.157 -0.153 

15 -0.12 -0.057 30 0.023 -0.015 

******* 


