CERTIFICATE

IMPACT FACTOR 2021

Subject Area

  • Life Sciences / Biology
  • Architecture / Building Management
  • Asian Studies
  • Business & Management
  • Chemistry
  • Computer Science
  • Economics & Finance
  • Engineering / Acoustics
  • Environmental Science
  • Agricultural Sciences
  • Pharmaceutical Sciences
  • General Sciences
  • Materials Science
  • Mathematics
  • Medicine
  • Nanotechnology & Nanoscience
  • Nonlinear Science
  • Chaos & Dynamical Systems
  • Physics
  • Social Sciences & Humanities

Why Us? >>

  • Open Access
  • Peer Reviewed
  • Rapid Publication
  • Life time hosting
  • Free promotion service
  • Free indexing service
  • More citations
  • Search engine friendly

Customer segmentation using clustering

Author: 
Karthick Raja, J.
Subject Area: 
Physical Sciences and Engineering
Abstract: 

Customer segmentation is a pivotal strategy for businesses to tailor their marketing efforts and optimize customer satisfaction. This project focuses on utilizing K-means clustering, a popular unsupervised learning algorithm, to partition customers into distinct segments based on their demographic attributes, annual income, and spending behaviour. Through comprehensive data exploration and visualization techniques, we analyse the distribution of customer characteristics and identify meaningful clusters. By applying K-means clustering, we aim to uncover hidden patterns and preferences among customers, enabling businesses to develop targeted marketing strategies and enhance customer engagement. The effectiveness of the segmentation process is evaluated through metrics such as silhouette score and within-cluster sum of squares (WCSS). Insights gained from this analysis can empower businesses with valuable insights into customer behavior, facilitating informed decision-making and personalized customer experiences. This project contributes to the field of customer relationship management by providing a data-driven approach to segmentation and highlighting the significance of clustering algorithms in understanding customer dynamics.

PDF file: 

ONLINE PAYPAL PAYMENT

IJMCE RECOMMENDATION

Advantages of IJCR

  • Rapid Publishing
  • Professional publishing practices
  • Indexing in leading database
  • High level of citation
  • High Qualitiy reader base
  • High level author suport

Plagiarism Detection

IJCR is following an instant policy on rejection those received papers with plagiarism rate of more than 20%. So, All of authors and contributors must check their papers before submission to making assurance of following our anti-plagiarism policies.

 

EDITORIAL BOARD

Dr. Swamy KRM
India
Dr. Abdul Hannan A.M.S
Saudi Arabia.
Luai Farhan Zghair
Iraq
Hasan Ali Abed Al-Zu’bi
Jordanian
Fredrick OJIJA
Tanzanian
Firuza M. Tursunkhodjaeva
Uzbekistan
Faraz Ahmed Farooqi
Saudi Arabia
Eric Randy Reyes Politud
Philippines
Elsadig Gasoom FadelAlla Elbashir
Sudan
Eapen, Asha Sarah
United State
Dr.Arun Kumar A
India
Dr. Zafar Iqbal
Pakistan
Dr. SHAHERA S.PATEL
India
Dr. Ruchika Khanna
India
Dr. Recep TAS
Turkey
Dr. Rasha Ali Eldeeb
Egypt
Dr. Pralhad Kanhaiyalal Rahangdale
India
DR. PATRICK D. CERNA
Philippines
Dr. Nicolas Padilla- Raygoza
Mexico
Dr. Mustafa Y. G. Younis
Libiya
Dr. Muhammad shoaib Ahmedani
Saudi Arabia
DR. MUHAMMAD ISMAIL MOHMAND
United State
DR. MAHESH SHIVAJI CHAVAN
India
DR. M. ARUNA
India
Dr. Lim Gee Nee
Malaysia
Dr. Jatinder Pal Singh Chawla
India
DR. IRAM BOKHARI
Pakistan
Dr. FARHAT NAZ RAHMAN
Pakistan
Dr. Devendra kumar Gupta
India
Dr. ASHWANI KUMAR DUBEY
India
Dr. Ali Seidi
Iran
Dr. Achmad Choerudin
Indonesia
Dr Ashok Kumar Verma
India
Thi Mong Diep NGUYEN
France
Dr. Muhammad Akram
Pakistan
Dr. Imran Azad
Oman
Dr. Meenakshi Malik
India
Aseel Hadi Hamzah
Iraq
Anam Bhatti
Malaysia
Md. Amir Hossain
Bangladesh
Ahmet İPEKÇİ
Turkey
Mirzadi Gohari
Iran